y-3=3(x+1)
opening the bracket
y-3=3x+3
y=3x+3+3
equation of the line in the form y=mx+c;
y=3x+6
therefore gradient=3
parallel lines have same gradient therefore gradient of the other line is 3
y--3/x-0=3
y+3=3(x-0)
y+3=3x-0
y=3x-3.
Answer:
I would be y
Step-by-step explanation:
sorry if it is wrong
Answer:
D
Step-by-step explanation:
the 80*10=800
8 in 183= 80
8 in 4879 = 800
Answer:
y=-3/16(x-8)^2+12
Step-by-step explanation:
Refer to the vertex form equation for a parabola:
y=a(x-h)^2+k where (h,k) is the vertex.
Therefore, we have y=a(x-8)^2+12 as our equation so far. If we plug in (16,0) we can find a:
0=a(16-8)^2+12
0=64a+12
-12=64a
-12/64=a
-3/16=a
Therefore, your final equation is y=-3/16(x-8)^2+12