Answer:
the probability that the woman is taller than the man is 0.1423
Step-by-step explanation:
Given that :
the men's heights are normally distributed with mean
68
standard deviation
= 3.1
And
the women's heights are normally distributed with mean
65
standard deviation
= 2.8
We are to find the probability that the woman is taller than the man.
For woman now:
mean
= 65
standard deviation
= 2.8

![\\ 1 -p \ P[(x - \mu ) / \sigma < (68-25)/ 2.8]](https://tex.z-dn.net/?f=%5C%5C%201%20-p%20%20%5C%20P%5B%28x%20-%20%5Cmu%20%29%20%2F%20%5Csigma%20%3C%20%2868-25%29%2F%202.8%5D)
= 1-P (z , 1.07)
Using z table,
= 1 - 0.8577
= 0.1423
Thus, the probability that the woman is taller than the man is 0.1423
The first one is categorical data
the second one is discrete numerical
and the third one is continuous numerical
i hope this helps you
<span />
Answer:
You go to whoever's question you wanna answer and it should say "add answer" and just type out your answer and solve it