Answer:
To figure out if an ordered pair is a solution to an equation, you could perform a test. Identify the x-value in the ordered pair and plug it into the equation. When you simplify, if the y-value you get is the same as the y-value in the ordered pair, then that ordered pair is indeed a solution to the equation.
Step-by-step explanation:
9514 1404 393
Answer:
top down: ∞, 0, 1, 0, ∞
Step-by-step explanation:
The equation will have infinite solutions when the left side and right side simplify to the same expression. This is the case for the first and last expressions listed.
2(x -5) = 2(x -5) . . . . expressions are already identical
x +2(x -5) = 3(x -2) -4 ⇒ 3x -10 = 3x -10 . . . the same simplified expression
__
The equation will have no solutions when the x-coefficients are the same, but there are different added constants.
5(x +4) = 5(x -6) ⇒ x +4 = x -6 . . . not true for any x
4(x -2) = 4(x +2) ⇒ x -2 = x +2 . . . not true for any x
__
The equation will have one solution when coefficients of x are different.
5(x +4) = 3(x -6) ⇒ 2x = -38 ⇒ x = -19
Answer:
The transformation rule is (x, y) → (x + 0, y + 4).
There occurs a transformation of vertical translation.
Step-by-step explanation:
A translation moves point V(–2,3) to V'(-2,7).
We have to choose the true statement about the translation from the given options.
The transformation rule is (x, y) → (x + 0, y + 4).
There occurs a transformation of vertical translation. (Answer)
{Since the x-value does not change and the y-value changes by 4 unit to the upward direction}