<h3>
The probability of not choosing 2 peaches is
.</h3>
Step-by-step explanation:
Here, the total number of bins = 10
Total orange bins = 2
Total apples bins = 3
Total peaches bins = 4
Total melon bins = 1
Let E : Event of picking two peaches
So, P(Picking 1 peach ) = ![\frac{\textrm{Total peaches in bins}}{\textrm{Total bins}} = \frac{4}{10}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctextrm%7BTotal%20peaches%20in%20bins%7D%7D%7B%5Ctextrm%7BTotal%20bins%7D%7D%20%20%20%3D%20%5Cfrac%7B4%7D%7B10%7D)
and P (Picking 2nd peach ) = ![\frac{\textrm{Total peaches in bins}}{\textrm{Total bins}} = \frac{3}{9}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctextrm%7BTotal%20peaches%20in%20bins%7D%7D%7B%5Ctextrm%7BTotal%20bins%7D%7D%20%20%20%3D%20%5Cfrac%7B3%7D%7B9%7D)
![\implies P(E) = \frac{4}{10} \times\frac{3} {9} = \frac{2}{15}](https://tex.z-dn.net/?f=%5Cimplies%20P%28E%29%20%3D%20%5Cfrac%7B4%7D%7B10%7D%20%20%5Ctimes%5Cfrac%7B3%7D%20%7B9%7D%20%20%3D%20%5Cfrac%7B2%7D%7B15%7D)
So, the probability of not picking 2 peaches = 1 - P(picking 2 peaches)
![= 1 - (\frac{2}{15} ) = \frac{13}{15}](https://tex.z-dn.net/?f=%3D%201%20-%20%28%5Cfrac%7B2%7D%7B15%7D%20%29%20%3D%20%5Cfrac%7B13%7D%7B15%7D)
Hence, the probability of not choosing 2 peaches is
.