1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ahrayia [7]
3 years ago
11

Find an equation of the tangent plane to the given parametric surface at the specified point.

Mathematics
1 answer:
Neko [114]3 years ago
5 0

Answer:

Equation of tangent plane to given parametric equation is:

\frac{\sqrt{3}}{2}x-\frac{1}{2}y+z=\frac{\pi}{3}

Step-by-step explanation:

Given equation

      r(u, v)=u cos (v)\hat{i}+u sin (v)\hat{j}+v\hat{k}---(1)

Normal vector  tangent to plane is:

\hat{n} = \hat{r_{u}} \times \hat{r_{v}}\\r_{u}=\frac{\partial r}{\partial u}\\r_{v}=\frac{\partial r}{\partial v}

\frac{\partial r}{\partial u} =cos(v)\hat{i}+sin(v)\hat{j}\\\frac{\partial r}{\partial v}=-usin(v)\hat{i}+u cos(v)\hat{j}+\hat{k}

Normal vector  tangent to plane is given by:

r_{u} \times r_{v} =det\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\cos(v)&sin(v)&0\\-usin(v)&ucos(v)&1\end{array}\right]

Expanding with first row

\hat{n} = \hat{i} \begin{vmatrix} sin(v)&0\\ucos(v) &1\end{vmatrix}- \hat{j} \begin{vmatrix} cos(v)&0\\-usin(v) &1\end{vmatrix}+\hat{k} \begin{vmatrix} cos(v)&sin(v)\\-usin(v) &ucos(v)\end{vmatrix}\\\hat{n}=sin(v)\hat{i}-cos(v)\hat{j}+u(cos^{2}v+sin^{2}v)\hat{k}\\\hat{n}=sin(v)\hat{i}-cos(v)\hat{j}+u\hat{k}\\

at u=5, v =π/3

                  =\frac{\sqrt{3} }{2}\hat{i}-\frac{1}{2}\hat{j}+\hat{k} ---(2)

at u=5, v =π/3 (1) becomes,

                 r(5, \frac{\pi}{3})=5 cos (\frac{\pi}{3})\hat{i}+5sin (\frac{\pi}{3})\hat{j}+\frac{\pi}{3}\hat{k}

                r(5, \frac{\pi}{3})=5(\frac{1}{2})\hat{i}+5 (\frac{\sqrt{3}}{2})\hat{j}+\frac{\pi}{3}\hat{k}

                r(5, \frac{\pi}{3})=\frac{5}{2}\hat{i}+(\frac{5\sqrt{3}}{2})\hat{j}+\frac{\pi}{3}\hat{k}

From above eq coordinates of r₀ can be found as:

            r_{o}=(\frac{5}{2},\frac{5\sqrt{3}}{2},\frac{\pi}{3})

From (2) coordinates of normal vector can be found as

            n=(\frac{\sqrt{3} }{2},-\frac{1}{2},1)  

Equation of tangent line can be found as:

  (\hat{r}-\hat{r_{o}}).\hat{n}=0\\((x-\frac{5}{2})\hat{i}+(y-\frac{5\sqrt{3}}{2})\hat{j}+(z-\frac{\pi}{3})\hat{k})(\frac{\sqrt{3} }{2}\hat{i}-\frac{1}{2}\hat{j}+\hat{k})=0\\\frac{\sqrt{3}}{2}x-\frac{5\sqrt{3}}{4}-\frac{1}{2}y+\frac{5\sqrt{3}}{4}+z-\frac{\pi}{3}=0\\\frac{\sqrt{3}}{2}x-\frac{1}{2}y+z=\frac{\pi}{3}

You might be interested in
35
jeka94

Answer C

steps

deduct 10 from 26

26-10 which will give us 16

5 0
3 years ago
I purchase a new gaming system on opening night. Since I am one of the first 100 customers to purchase the system, the store giv
posledela

Answer:

2500

Step-by-step explanation:

50020%50020%

Convert 20%20% to a decimal.

5000.25000.2

Divide 500500 by 0.20.2.

2500

7 0
3 years ago
Harrison rode his bike 6/10 Of a mile to the park shade the model then write 6/10 as a decimal to show how far Harrison rode his
alexira [117]
6/10 as a decimal would be 0.6
4 0
3 years ago
If the square of a positive integer is added to 2 times the integer, the result is 195 . Find the integer
user100 [1]
A^2+2a=195
Quadratic Formula,
a=13,-15
3 0
3 years ago
Find the area of the trapozoid.​
Bad White [126]

Area =

\frac{1} {2} \times sum \: of \: parallel \: sides \:  \times height

=》

\frac{1}{2}  \times (6 + 10) \times 5

=》

\frac{1}{2}  \times 16 \times 5

=》

8 \times 5

=》

40

Area = 40 in²

5 0
3 years ago
Read 2 more answers
Other questions:
  • Someone please help me will give BRAILIEST?!!!
    12·2 answers
  • May u help me with problem because i dont understand it
    12·1 answer
  • What does the mean tell you about the prices of the computers
    6·1 answer
  • A gumball has a diameter that is 66 mm. The diameter of the gumball's spherical hollow core is 58 mm. What is the volume of the
    15·1 answer
  • 151 241<br> 12 12<br> 102<br> 101<br> 35<br> Perimeter<br> ?<br> Simplify your answer completely
    11·1 answer
  • Can u please answer this sme one​
    11·2 answers
  • Monty Ricker obtained a used car loan of $ 6,000.00 at 8% for 36 months. The monthly payment is $ 187.80. The balance of the loa
    11·1 answer
  • What is the solution to the equation x + 7 = 63?<br><br> 9<br> 16<br> 56<br> 70
    8·1 answer
  • Evaluat the expression 202-[2(3+7)+6]=<br>​
    14·1 answer
  • There are y cupcakes in the class. It is two more than 4 times the number of donuts (X). How many donuts are there in the class?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!