9 - 2(7 - 8)
9 - 2(-1)
9 - (-2)
11
Answer: There is linear relationship between the number of days that Kyla exercise in the total minutes that she exercises.
The independent variable is 'd' and m is the dependent variable which depends on the number of days she exercise.
The linear equation for the situation is given by

Step-by-step explanation:
Let d be the number of days that Kyla exercises, and let m represent the total numbers of minutes she exercise.
Kyla spends 60 Minutes of each day exercising which is constant .
Then the total numbers of minutes she exercise(m) in d days is given by
which is the linear equation.
The relationship between the number of days that Kyla exercise in the total minutes that she exercises is linear, where d is the independent variable, and m is the dependent variable which depends on the number of days she exercise.
[ad d increases m increases by rate of 60 minutes per day]
The linear equation for the situation is given by

Let us take 'a' in the place of 'y' so the equation becomes
(y+x) (ax+b)
Step-by-step explanation:
<u>Step 1:</u>
(a + x) (ax + b)
<u>Step 2: Proof</u>
Checking polynomial identity.
(ax+b )(x+a) = FOIL
(ax+b)(x+a)
ax^2+a^2x is the First Term in the FOIL
ax^2 + a^2x + bx + ab
(ax+b)(x+a)+bx+ab is the Second Term in the FOIL
Add both expressions together from First and Second Term
= ax^2 + a^2x + bx + ab
<u>Step 3: Proof
</u>
(ax+b)(x+a) = ax^2 + a^2x + bx + ab
Identity is Found
.
Trying with numbers now
(ax+b)(x+a) = ax^2 + a^2x + bx + ab
((2*5)+8)(5+2) =(2*5^2)+(2^2*5)+(8*5)+(2*8)
((10)+8)(7) =(2*25)+(4*5)+(40)+(16)
(18)(7) =(50)+(20)+(56)
126 =126
The solution to the graph is (-1,4). you should try desmos to help graph.
hope this helps and please rate as brainliest!! thanks!! :)
Answer:

Step-by-step explanation:
Given A = 5i + 11j – 2k and B = 4i + 7k, the vector projection of B unto a is expressed as 
b.a = (5i + 11j – 2k)*( 4i + 0j + 7k)
note that i.i = j.j = k.k =1
b.a = 5(4)+11(0)-2(7)
b.a = 20-14
b.a = 6
||a|| = √5²+11²+(-2)²
||a|| = √25+121+4
||a|| = √130
square both sides
||a||² = (√130)
||a||² = 130

<em>Hence the projection of b unto a is expressed as </em>
<em></em>