I'll turn it into a whole number & percent for ya.. 28 28%
BC=19
Explanation
Step 1
ABE
triangle ABE is rigth triangle, then let
![\begin{gathered} Angle=60 \\ adjacentside=BE \\ opposit\text{ side(the one in front of the angle)= AB=}\frac{19\sqrt[]{6}}{4} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20Angle%3D60%20%5C%5C%20adjacentside%3DBE%20%5C%5C%20opposit%5Ctext%7B%20side%28the%20one%20in%20front%20of%20the%20angle%29%3D%20AB%3D%7D%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%7D%20%5Cend%7Bgathered%7D)
so, we need a function that relates, angle, adjancent side and opposite side

replace
![\begin{gathered} \tan \theta=\frac{opposite\text{ side}}{\text{adjacent side}} \\ \tan 60=\frac{AB}{\text{BE}} \\ \text{cross multiply} \\ \text{BE}\cdot\tan \text{ 60=AB} \\ \text{divide both sides by tan 60} \\ \frac{\text{BE}\cdot\tan\text{ 60}}{\tan\text{ 60}}=\frac{\text{AB}}{\tan\text{ 60}} \\ BE=\frac{\text{AB}}{\tan\text{ 60}} \\ \text{if AB=}\frac{19\sqrt[]{6}}{4} \\ BE=\frac{\frac{19\sqrt[]{6}}{4}}{\sqrt[]{3}} \\ BE=\frac{19\sqrt[]{6}}{4\sqrt[]{3}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctan%20%5Ctheta%3D%5Cfrac%7Bopposite%5Ctext%7B%20side%7D%7D%7B%5Ctext%7Badjacent%20side%7D%7D%20%5C%5C%20%5Ctan%2060%3D%5Cfrac%7BAB%7D%7B%5Ctext%7BBE%7D%7D%20%5C%5C%20%5Ctext%7Bcross%20multiply%7D%20%5C%5C%20%5Ctext%7BBE%7D%5Ccdot%5Ctan%20%5Ctext%7B%2060%3DAB%7D%20%5C%5C%20%5Ctext%7Bdivide%20both%20sides%20by%20tan%2060%7D%20%5C%5C%20%5Cfrac%7B%5Ctext%7BBE%7D%5Ccdot%5Ctan%5Ctext%7B%2060%7D%7D%7B%5Ctan%5Ctext%7B%2060%7D%7D%3D%5Cfrac%7B%5Ctext%7BAB%7D%7D%7B%5Ctan%5Ctext%7B%2060%7D%7D%20%5C%5C%20BE%3D%5Cfrac%7B%5Ctext%7BAB%7D%7D%7B%5Ctan%5Ctext%7B%2060%7D%7D%20%5C%5C%20%5Ctext%7Bif%20AB%3D%7D%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%7D%20%5C%5C%20BE%3D%5Cfrac%7B%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%7D%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%20BE%3D%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%5Csqrt%5B%5D%7B3%7D%7D%20%5Cend%7Bgathered%7D)
Step 2
BED
again, we have a rigth triangle,then let

so, we need a function that relates; angle, hypotenuse and adjacent side

replace.
![\begin{gathered} \cos \theta=\frac{adjacent\text{ side}}{\text{hypotenuse}} \\ \cos 45=\frac{6.71}{\text{BD}} \\ BD=\frac{6.71}{\cos \text{ 45}} \\ BD=\frac{\frac{19\sqrt[]{6}}{4\sqrt[]{3}}}{\frac{\sqrt[]{2}}{2}} \\ BD=\frac{38\sqrt[]{6}}{4\sqrt[]{6}} \\ BD=\frac{38}{4} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ccos%20%5Ctheta%3D%5Cfrac%7Badjacent%5Ctext%7B%20side%7D%7D%7B%5Ctext%7Bhypotenuse%7D%7D%20%5C%5C%20%5Ccos%2045%3D%5Cfrac%7B6.71%7D%7B%5Ctext%7BBD%7D%7D%20%5C%5C%20BD%3D%5Cfrac%7B6.71%7D%7B%5Ccos%20%5Ctext%7B%2045%7D%7D%20%5C%5C%20BD%3D%5Cfrac%7B%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%5Csqrt%5B%5D%7B3%7D%7D%7D%7B%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%7D%7B2%7D%7D%20%5C%5C%20BD%3D%5Cfrac%7B38%5Csqrt%5B%5D%7B6%7D%7D%7B4%5Csqrt%5B%5D%7B6%7D%7D%20%5C%5C%20BD%3D%5Cfrac%7B38%7D%7B4%7D%20%5Cend%7Bgathered%7D)
Step 3
finally BDE
let
angle=30
opposite side= BD
use sin function

so, the answer is 19
I hop
Step-by-step explanation:
- 300
- 220
- 30
- 2/5=0.4
- 2
Hope it helps you
To solve the expression given , Drag zero pairs to the window and then Remove the 5 groups of –2 tiles , Option b and c is the right answer
<h3>What is an Integer Tile method ?</h3>
It is a teaching method in which materialistic representation is done for concepts like addition and subtraction .
It is used for kids who find it difficult to understand adding a negative integer etc.
For the expression given
-5 (-2)
Drag zero pairs to the window and then Remove the 5 groups of –2 tiles.
Therefore Option B and C is the right answer.
To know more about Integer Tile Method
brainly.com/question/18097183
#SPJ1
<h3>
Answer: Choice A. Graph (1)</h3>
Reasoning:
If it is at all possible to draw a single vertical line through more than one point on the curve, then the graph is not a function. With graphs (2), (3) and (4), we can draw a vertical line through more than one point on those curves, so they aren't functions. Graph (1) is the only thing left. This graph is a function because it is not possible to draw a single vertical line through more than one point. It passes the vertical line test. Any input (x) leads to exactly one and only one y output.
Nice work on getting the correct answer when you chose "graph (1)".