<span>
y = 7 + 3/5
y = 35/5 + 3/5
y = 38/5
y = 2*(38/5)
y = 76/10
---
lunch time:
z = 1/2
z = 5*(1/2)
z = 5/10
---
time switching classes:
w = 7/10
---
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (76/10 - 5/10 - 7/10)/6
x = (76 - 5 - 7)/(10*6)
x = (64)/(10*6)
x = (2*2*2*2*2*2)/(2*5*2*3)
x = (2*2*2*2)/(5*3)
x = 16/15
x = 1.0666666666
---
check:
y = 7 + 3/5
y = 7.6
z = 1/2
z = 0.5
w = 7/10
w = 0.7
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (7.6 - 0.5 - 0.7)/6
x = 1.0666666666
answer:
1.07 hours</span>
Answer:
y = x² + 3x - 40
Step-by-step explanation:
Given the zeros are x = - 8 and x = 5, then the factors are
(x + 8) and (x - 5) and
y = (x + 8)(x - 5) ← expand factors
y = x² - 5x + 8x - 40, hence
y = x² + 3x - 40 ← in standard form
A(5) = 2 + 5^2 = 2 + 25 = 27
Step-by-step explanation:
This sequence is defined as a(n) = 2 + n^2.
Thus, a(1) = 2 + 1^2 = 2 + 1 = 3
Then a(5) = 2 + 5^2 = 2 + 25 = 27