Answer:
thousandth
Step-by-step explanation:
Answer: 1 = 6 - 5 + 3 × 0
Answer:
1/6 p -4/5
Step-by-step explanation:
- 2/3p + 1/5 - 1 + 5/6p
When I combine like terms, I put them next to each other.
- 2/3p + 5/6p+ 1/5 - 1
We need to get a common denominator of 6 for the p terms
-2/3 *2/2 p + 5/6 p
-4/6p + 5/6 p
1/6 p
We need to get a common denominator of 5 for the contant terms
1/5 - 1*5/5
1/5-5/5
-4/5
Substituting these in
2/3p + 5/6p+ 1/5 - 1
1/6 p -4/5
Answer:
Anything in the form x = pi+k*pi, for any integer k
These are not removable discontinuities.
============================================================
Explanation:
Recall that tan(x) = sin(x)/cos(x).
The discontinuities occur whenever cos(x) is equal to zero.
Solving cos(x) = 0 will yield the locations when we have discontinuities.
This all applies to tan(x), but we want to work with tan(x/2) instead.
Simply replace x with x/2 and solve for x like so
cos(x/2) = 0
x/2 = arccos(0)
x/2 = (pi/2) + 2pi*k or x/2 = (-pi/2) + 2pi*k
x = pi + 4pi*k or x = -pi + 4pi*k
Where k is any integer.
If we make a table of some example k values, then we'll find that we could get the following outputs:
- x = -3pi
- x = -pi
- x = pi
- x = 3pi
- x = 5pi
and so on. These are the odd multiples of pi.
So we can effectively condense those x equations into the single equation x = pi+k*pi
That equation is the same as x = (k+1)pi
The graph is below. It shows we have jump discontinuities. These are <u>not</u> removable discontinuities (since we're not removing a single point).