Answer:
![u_{v}=-\frac{24}{\sqrt{745} }i +\frac{13}{\sqrt{745} } j](https://tex.z-dn.net/?f=u_%7Bv%7D%3D-%5Cfrac%7B24%7D%7B%5Csqrt%7B745%7D%20%7Di%20%2B%5Cfrac%7B13%7D%7B%5Csqrt%7B745%7D%20%7D%20j)
Step-by-step explanation:
The initial point of the vector is at (7,-9).
The terminal point of the vector is at (-17,4).
First, we need to find the same vector with initial point at the origin of the coordinate system. We do that by finding its horizontal length and its vertical length.
![\Delta x = -17 - 7=-24\\\Delta y = 4-(-9)=13](https://tex.z-dn.net/?f=%5CDelta%20x%20%3D%20-17%20-%207%3D-24%5C%5C%5CDelta%20y%20%3D%204-%28-9%29%3D13)
So, the vector with initial point at the origin is
Where
represents horizontal direction and
represents vertical direction.
Now, we need to find the module of this vector
![|v|=\sqrt{(-24)^{2}+(13)^{2} }=\sqrt{576+169}\\ |v|=\sqrt{745}](https://tex.z-dn.net/?f=%7Cv%7C%3D%5Csqrt%7B%28-24%29%5E%7B2%7D%2B%2813%29%5E%7B2%7D%20%20%7D%3D%5Csqrt%7B576%2B169%7D%5C%5C%20%20%7Cv%7C%3D%5Csqrt%7B745%7D)
The uni vector is defined by the quotient between the vector and its module.
![u_{v} =\frac{v}{|v|}](https://tex.z-dn.net/?f=u_%7Bv%7D%20%3D%5Cfrac%7Bv%7D%7B%7Cv%7C%7D)
Replacing each part, we have
![u_{v}=\frac{-24i+13j}{\sqrt{745} }\\ u_{v}=-\frac{24}{\sqrt{745} }i +\frac{13}{\sqrt{745} } j](https://tex.z-dn.net/?f=u_%7Bv%7D%3D%5Cfrac%7B-24i%2B13j%7D%7B%5Csqrt%7B745%7D%20%7D%5C%5C%20%20u_%7Bv%7D%3D-%5Cfrac%7B24%7D%7B%5Csqrt%7B745%7D%20%7Di%20%2B%5Cfrac%7B13%7D%7B%5Csqrt%7B745%7D%20%7D%20j)
Therefore, the right answer is the third choice.