They are all tetrapoda.
Tetrapods are animals (group of vertebrates) with four limbs including amphibians (frogs), reptiles (caimans), birds (parrots) and mammals (hares, humans). Even though the subgroups within Tetrapods differ a lot, they all have various adaptations of the skeleton and muscles that enable them movement on land, adaptations of cranium (for head stability), tissues that reduce water loss (because of living outside the water)…Except amphibians all other tetrapoda are amniotes (have amnion layer around embryo)
Answer:
6O2 + C6H12O6 --> 6CO2 + 6H2O + ATP energy
and the photosynthesis reaction takes the opposite only it's input is sunlight energy
without either we are all dead
they are complimentary
Explanation:
<span>Which term names the offspring of a cross between two true breeding parents is First Generation...B</span>
Answer:
a) The expected phenotype of the F1 plants is 100% RrBb, red kernels.
b) The expected phenotypic classes in the F2 are: 9:3:3:1
9/16 R-B-, 3/16 rrB-, 3/16 R-bb, 1/16 rrbb
Proportions 9:6:1.
9/16 Red kernel (R-B-), 6/16 Brown kernel (rrB- + R-bb), 1/16 White kernel (rrbb)
Explanation:
<u>Available data:</u>
- brown kernel: R-bb or rrB-
1º Cross) RRBB x rrbb
F1) 100% RrBb (red kernels)
2ºCross) RrBb x RrBb
Gametes) RB RB
Rb Rb
rB rB
rb rb
Punnet Square) RB Rb rB rb
RB RRBB RRBb RrBB RrBb
Rb RRBb RRbb RrBB Rrbb
rB RrBB RrBb rrBB rrBb
rb RrBb Rrbb rrBb rrbb
F2) Phenotypic classes:
<em>9/16 R-B-</em>
<em> 3/16 rrB-</em>
<em> 3/16 R-bb</em>
<em> 1/16 rrbb</em>
Phenotypic proportions:
<em>9/16 Red kernel (R-B-)</em>
<em> 6/16 Brown kernel (rrB- + R-bb)</em>
<em> 1/16 White kernel (rrbb) </em>
I) Locus- the chromosomal site where a specific gene is located. A locus is a fixed position on a chromosome, like the position of a gene or a marker. Each chromosome carries ,many genes; human's estimated haploid (n) protein coding genes are about 20,000, on the 23 different chromosomes.
ii) Interference; the observed double crossover frequency differs from the expected double crossover frequency. Cross over interference is used to refer to the non-random placement of crossovers with respect to each other during meiosis. It results in widely spaced crossovers along chromosomes. Interference may exert its effect across whole chromosomes. As chromosomes in many eukaryotes are large, interference must be able to act over megabase lengths of DNA.
iii) Linkage- the tendency for genes located in close proximity on the same chromosome to be inherited together. Normally when two genes are close together on the same chromosome, they do not assort independently and are said to be linked. Whereas genes located on different chromosomes assort independently and have a recombination frequency of 50%, linked genes have a recombination frequency that is less than 50%.
iv) Recombination- the process by which a new pattern of alleles on a chromosome is generated. Genetic recombination is the production of offspring with combinations f traits that differ from those found in either parent. During meiosis in eukaryotes, genetic recombination involves the pairing of homologous chromosomes. This may be followed by information transfer between the chromosomes.