Answer: -252
Hope this helps!
Use the trig identity
2*sin(A)*cos(A) = sin(2*A)
to get
sin(A)*cos(A) = (1/2)*sin(2*A)
So to find the max of sin(A)*cos(A), we can find the max of (1/2)*sin(2*A)
It turns out that sin(x) maxes out at 1 where x can be any expression you want. In this case, x = 2*A.
So (1/2)*sin(2*A) maxes out at (1/2)*1 = 1/2 = 0.5
The greatest value of sin(A)*cos(A) is 1/2 = 0.5
Answer:
16 m
Step-by-step explanation:
Are you taking the state test-