Step-by-step explanation:
B) b = 9
C) 7 + 19 = 26
O) a + 9 > 72 <=> a > 63 <=> a = (64, 65, 66, ...)
1. alternate interior angles, x= -10
2. corresponding angles, x= 30
Answer:
{3¢, 28¢} or {4¢, 19¢} or {7¢, 10¢}
Step-by-step explanation:
54 = 1×54 = 2×27 = 3×18 = 6×9
Possible values of the stamps are 1 more than the values of a pair of factors. Of course, a 2¢ and 55¢ stamp will not permit paying 54¢ in postage, so that combination won't work. However, other pairs that will work are ...
- 3¢ and 28¢
- 4¢ and 19¢
- 7¢ and 10¢
Answer:
4y = 6x + 40
Step-by-step explanation:
The general equation of a straight line is y = mx + b
m is the slope and b is the y-intercept
let us write both equations in this form;
we have this as;
6y = -4x + 1
y = -4x/6 + 1/6
and;
2x + 3y = 18
3y = -2x + 18
y = -2x/3 + 6
So firstly we want to find an equation that is perpendicular to the first
When two lines are perpendicular, their slopes has a product of -1
The slope of the first line is -4/6
let the slope of the line we want be m
As per they are perpendicular;
-4/6 * m = -1
-4m/6 = -1
-4m = -6
m = 6/4
So now, we want the y-intercept greater than that of the second equation which is a y-intercept of 6
we can choose 10
and we have the equation as:
y = 6x/4 + 10
multiply through by 4
4y = 6x + 40
The answer would be 6 × b < $118, since the price, b, of six dolls is less than (<) $118.