Answer:
Option A. A and D
Step-by-step explanation:
This answer because they are both right triangles and are near the same size
Hope this helps!
Answer:
They ran it equally
Step-by-step explanation:
89/100 equals 0.89: 89 divided by 100 = 0.89.
Step-by-step explanation:
Solve for xsin3⁡x+cos3⁡x=1" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: inherit; font-weight: normal; font-stretch: inherit; line-height: normal; font-family: inherit; font-size: 15px; vertical-align: baseline; box-sizing: inherit; display: inline; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">xsin3x+cos3x=1xsin3x+cos3x=1
sin3⁡x+cos3⁡x=1(sin⁡x+cos⁡x)(sin2⁡x−sin⁡x⋅cos⁡x+cos2⁡x)=1(sin⁡x+cos⁡x)(1−sin⁡x⋅cos⁡x)=1" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: inherit; font-weight: normal; font-stretch: inherit; line-height: normal; font-family: inherit; font-size: 15px; vertical-align: baseline; box-sizing: inherit; display: inline; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">sin3x+cos3x=1(sinx+cosx)(sin2x−sinx⋅cosx+cos2x)=1(sinx+cosx)(1−sinx⋅cosx)=1
Use the power rule for differentiation:

You can use this formula if you remember that a root is just a rational exponential:
![\sqrt[4]\ln(x) = (\ln(x))^{\frac{1}{4}}](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%5Cln%28x%29%20%3D%20%28%5Cln%28x%29%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%20)
So, remembering that the derivative of the logarithm is 1/x, you have

Which you can rewrite as
![\dfrac{1}{4}(\ln(x))^{\frac{1}{4}-1}\dfrac{1}{x} =\dfrac{1}{4}(\ln(x))^{\frac{-3}{4}}\dfrac{1}{x} =\dfrac{1}{4}\dfrac{1}{\sqrt[4]{\ln(x))^3}}\dfrac{1}{x} = \dfrac{1}{4x\sqrt[4]{\ln(x))^3}}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B4%7D%28%5Cln%28x%29%29%5E%7B%5Cfrac%7B1%7D%7B4%7D-1%7D%5Cdfrac%7B1%7D%7Bx%7D%20%3D%5Cdfrac%7B1%7D%7B4%7D%28%5Cln%28x%29%29%5E%7B%5Cfrac%7B-3%7D%7B4%7D%7D%5Cdfrac%7B1%7D%7Bx%7D%20%3D%5Cdfrac%7B1%7D%7B4%7D%5Cdfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B%5Cln%28x%29%29%5E3%7D%7D%5Cdfrac%7B1%7D%7Bx%7D%20%3D%20%5Cdfrac%7B1%7D%7B4x%5Csqrt%5B4%5D%7B%5Cln%28x%29%29%5E3%7D%7D%20)