Atoms and I molecule are bonded together by sharing gaining or losing electrons
Answer:
The mass of the object on the Moon (and anywhere else) is about 30.61kg. Please see more detail below.
Explanation:
Weight is the gravitational force exerted on the object and is a function of mass and gravitational acceleration:
(weight) = (mass) x (gravitational acceleration)
We are to find the mass, knowing the weight on Earth to be 300N:
(mass) = (weight on Earth) / (gravitational acceleration on Earth) = 300N / 9.8 m/s^2 = 30.61 kg
The mass of the object is 30.61kg.
The mass of the object is independent of gravity. Therefore the answer to the question "What is its mass on the Moon" is 30.61kg.
If the question were what is its weight on the Moon, the answer would be
(weight on Moon) = (mass) x (grav.accel. on Moon) = 30.61kg x 1.62 m/s^2 = 49.59N
which is about 1/6 of the object's weight on the Earth.
<span>The answer is a. cutting trees reduce fertility and eliminates animal habitats. Plant material is essential in maintaing soil fertility. Leaves and branches decay to form humus; removing trees decreases the organic content. Trees are home to many animal species, including birds, insects and amphibians. Some trees are even support or home to other plants. Examples include epiphytes in the rainforest ecosystem. Clear cutting forests disrupts whole communities and ecosystems. </span>
Answer:
a) d = 30.79 m
, b) θ = -22.4°
, θ = 22.4 South of East
Explanation:
The easiest way to solve problems with vectors is to use their components, for this the East-West direction coincides with the x-axis and the North-South direction coincides with the y-axis
Let's use the index for / Ricardo and the index for Jane, let's break down the displacements
Richard
X axis
x₁ = 26.0 sin (60)
x₁ = -22.52 m
Y Axis
y₁ = 26.0 cos 60
y₁ = 13 m / s
Jane
X axis
x₂ = 16.0 cos (180 +30)
x₂ = -13.85 m
Y Axis
y₂ = 16.0 sin (180 + 30)
y₂ = - 8.0 m
Now we can use Pythagoras' theorem to find the distance between them
d = √ [(x₂ -x₁)² + (y₂ -y₁)²]
d = √ [(-13.85 + 22.52)² + (-8 -13)²]
d = 30.79 m
Let's use trigonometry to enter the address
tan θ = Δy / Δx
θ = tan⁻¹ Δy / Δx
θ = tan⁻¹ (-13.85 + 22.52) / (-8 - 13)
θ = tan⁻¹ (-8.67 / 21)
θ = -22.4°
The negative sign indicates that the angle is measured from the axis clockwise.
In the form of cardinal s point is
θ = 22.4 South of East