F= ma
F= (600/-10) -10
F= 580n
At least I think that’s the answer
Answer:
4.24nm
0.385eV
Explanation:
Maximum wavelength (λmax) :
λmax = ( hc) /Φ
h = plancks constant = 6.63 * 10^-34
c = speed of light = 3*10^8
1ev = 1.6 * 10^-19
Φ = 2.93eV = 2.93* (1.6*10^-19) = 4.688*10^-19
λmax = [(6.63 * 10^-34) * (3 * 10^8)] / 4.688*10^-19
λmax = 19.89 * 10^-26 / 4.688*10^-19
λmax = 4.242 * 10^-7 m
λmax= 4.24nm
B.)
E = hc / eλ eV
λ = 3.75nm = 3.75 * 10^-7m = 375 *10^-9
E = (6.63 * 10^-34) * (3 * 10^8) / (1.6 * 10^-19) * (375 * 10^-9)
E = 19.89 * 10^-26 / 600 * 10^-28
E = 0.03315 * 10^-26 + 28
E = 0.03315 * 10^2
E = 3.315 eV
Stopping potential : (3.315 eV - 2.93eV) = 0.385eV
Answer:
C. Constant
Explanation:
The total energy of the cannonball remains constant as it travels through the air.
Answer:
The magnitude of acceleration is reduced.
Explanation:
Force is defined as push or pull
The force is said to be<em> balance force </em>if the force are equal in size but opposite in direction. ie the object does not move or move with constant speed.
The force are to be<em> unbalanced force </em>if the force cause change in motion. ie the object has force greater than zero and has acceleration.
According to <em>Newton second law of motion </em>, acceleration depends on force acting on the object and mass of object.
F=ma
a=
When unbalanced force act on the mass of object it reduces magnitude of acceleration without changing the direction.