Neither analog nor digital
For the answer to the question above, first find out the gradient.
<span>m = rise/run </span>
<span>=(y2-y1)/(x2-x1) </span>
<span>the x's and y's are the points given: "After three hours, the velocity of the car is 53 km/h. After six hours, the velocity of the car is 62 km/h" </span>
<span>(x1,y1) = (3,53) </span>
<span>(x2,y2) = (6,62) </span>
<span>sub values back into the equation </span>
<span>m = (62-53)/(6-3) </span>
<span>m = 9/3 </span>
<span>m = 3 </span>
<span>now we use a point-slope form to find the the standard form </span>
<span>y-y1 = m(x-x1) </span>
<span>where x1 and y1 are any set of point given </span>
<span>y-53 = 3(x-3) </span>
<span>y-53 = 3x - 9 </span>
<span>y = 3x - 9 + 53 </span>
<span>y = 3x + 44 </span>
<span>y is the velocity of the car, x is the time.
</span>I hope this helps.
Answer:
a) 
b) 
c) 
d) 
Explanation:
Given:
- distance down the field in the first interval,

- time duration of the first interval,

- distance down the field in the second interval,

- time duration of the second interval,

- distance down the field in the third interval,

- time duration of the third interval,

a)
velocity in the first interval:



b)
velocity in the second interval:



c)
velocity in the third interval:



d)
We know that the average velocity is given as the total displacement per unit time.



I would say D. all of the above
Answer:
A. 5 m/s
Explanation:
From the graph, for the first 2 seconds, the graph is a straight line meaning that the slope is a constant.
Average speed of an object is the rate of change of position. Here, the position of the object changes from 0 m to 10 m for a time interval of 2 seconds.
The change in position (
) and time interval (
) are given as:

Therefore, the average speed (
) is given as the ratio of the total change in position and the time interval for the change.

Hence, the average speed is 5 m/s.