The surface area of triangular prism is 117.12 mm²
<u>Explanation:</u>
Base side, a = 9 mm
Base side, b = 6.6 mm
Base side, c = 5.2 mm
Height, h = 4 mm
Total surface area = ?
We know,
Surface area, A = 2 Ab ( a+b+c) h
Ab = √s(s-a) (s-b) (s-c)
s = a+b+c/2
Solving for A
A = ah + b h + ch + 1/2 √ -a⁴ + 2(ab)² + 2(ac)² - b⁴ + 2 (b c)² - c⁴
A = 9.4 + 6.6 X 4 + 5.2 X 4 + 1//2 √ -9⁴ + 2(9 X 6.6)² + 2(9 X 5.2)² - (6.6)⁴ + 2 (6.6 X 5.2)² - (5.2)⁴
A = 117.12 mm²
Therefore, the surface area of triangular prism is 117.12 mm²
Answer:
−12x+26
Step-by-step explanation:
i said so kid
Use https://www.mathpapa.com/algebra-calculator.html
Answer:
The answer is 6x -7y = 21
Step-by-step explanation:
Im taking the diagnostic
Answer:
2/3
Step-by-step explanation:
Let's define z = x-y, so solving for z will tell us exactly what we want to know. Then we can substitute for x: x = z+y, and our equations become ...
7(z+y)+3y = 8 ⇒ 7z +10y = 8
6(z+y)-3y = 5 ⇒ 6z +3y = 5
We can eliminate the y-variable by subtracting 3 times the first equation from 10 times the second:
10(6z +3y) -3(7z +10y) = 10(5) -3(8)
60z +30y -21z -30y = 50 -24 . . . . eliminate parentheses
39z = 26 . . . . collect terms
z = 26/39 = 2/3 . . . . . divide by the coefficient of z and reduce
The value of x - y is 2/3.
_____
The attached graph shows (x, y) = (1, 1/3), so x - y = 1 - 1/3 = 2/3.