The empirical formula of the compound obtained from the question given is NaBrO₃
<h3>Data obtained from the question </h3>
- Sodium (Na) = 15.24%
- Bromine (Br) = 52.95%
- Oxygen (O) = 31.81%
<h3>How to determine the empirical formula </h3>
The empirical formula of the compound can be obtained as illustrated below:
Divide by their molar mass
Na = 15.24 / 22.99 = 0.663
Br = 52.95 / 79.90 = 0.663
O = 31.81 / 16 = 1.988
Divide by the smallest
Na = 0.663 / 0.663 = 1
Br = 0.663 / 0.663 = 1
O = 1.988 / 0.663 = 3
Thus, the empirical formula of the compound is NaBrO₃
Learn more about empirical formula:
brainly.com/question/24297883
Answer:
It would have to be around 9.8 volume
Explanation:
Answer:
Photon of light
Explanation:
According to Bohr's model of the atom, electrons in atoms are found in specific energy levels. These energy levels are called stationary states, an electrons does not radiate energy when it occupies any of these stationary states.
However, an electron may absorb energy and move from one energy level or stationary state to another. The energy difference between the two energy levels must correspond to the energy of the photon of light absorbed in order to make the transition possible.
Since electrons are generally unstable in excited states, the electron quickly jumps back to ground states and emits the excess energy absorbed. The frequency or wavelength of the emitted photon can now be measured and used to characterize the transition. This is the principle behind many spectrometric and spectrophotometric methods.
Answer:
-573.67
Explanation:
whenever energy is released in a chemical reaction, we would then expect the delta H of the reaction to be negative because the reaction is an exothermic reaction.
now we have that 2.81 moles of fuel when it combusts would releases 1612kJ of energy
thus, 1 mole will release 1612/2.81 = -573.67kJ of heat
Therefore the delta H of the reaction = -573.67 kJ/mol
Answer:
Nobelium is made by the bombardment of curium (Cm) with carbon nuclei. Its most stable isotope, 259No, has a half-life of 58 minutes and decays to Fermium (255Fm) through alpha decay or to Mendelevium (259Md) through electron capture.
Explanation: