The molar mass of Naphthalene is 128g/mol
Therefore; a mass of 1.64 g of Naphthalene contains'
= 1.64g/128 g
= 0.0128 moles
But, from the Avogadro's law 1 mole of a substance contains 6.022 × 10^23 particles
Therefore 1 mole of Naphthalene contains 6.022×10^23 molecules
Hence; 0.0128 moles × 6.022 ×10^23 molecules
= 7.716 × 10^21 molecules
Answer:
1. 2NaN₃(s) → 2Na(s) + 3N₂(g)
2. 14.5 g NaN₃
Explanation:
The answer is incomplete, as it is missing the required values to solve the problem. An internet search shows me these values for this question. Keep in mind that if your values are different your result will be different as well, but the solving methodology won't change.
" The airbags that protect people in car crashes are inflated by the extremely rapid decomposition of sodium azide, which produces large volumes of nitrogen gas. 1. Write a balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide (NaN₃) into solid sodium and gaseous dinitrogen. 2. Suppose 71.0 L of dinitrogen gas are produced by this reaction, at a temperature of 16.0 °C and pressure of exactly 1 atm. Calculate the mass of sodium azide that must have reacted. Round your answer to 3 significant digits. "
1. The <u>reaction that takes place is</u>:
- 2NaN₃(s) → 2Na(s) + 3N₂(g)
2. We use PV=nRT to <u>calculate the moles of N₂ that were produced</u>.
P = 1 atm
V = 71.0 L
n = ?
T = 16.0 °C ⇒ 16.0 + 273.16 = 289.16 K
- 1 atm * 71.0 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 289.16 K
Now we <u>convert N₂ moles to NaN₃ moles</u>:
- 0.334 mol N₂ *
= 0.223 mol NaN₃
Finally we <u>convert NaN₃ moles to grams</u>, using its molar mass:
- 0.223 mol NaN₃ * 65 g/mol = 14.5 g NaN₃
Monosaccharides are the simplest carbohydrates. Although glucose and fructose have the same molecular formula they have different structures or the atoms are arranged differently from each other and this is evident in the way they react, behave and in their properties.
<u>Answer:</u> The lewis dot structure is attached below.
<u>Explanation:</u>
A Lewis dot structure is defined as the representation of atoms having electrons around the atom where electrons are represented as dots.
A ketene is an organic compound having general formula R′R″C=C=O, where R and R' are two different/same monovalent chemical groups.
The given chemical compound having formula
is represented as
.
Total number of unshared electrons = 4 (left on oxygen atom only)
The lewis dot structure of
is given in the image below.