Answer:
4033
Step-by-step explanation:
An easy way to solve this problem is to notice the numerator, 2017^4-2016^4 resembles the special product a^2 - b^2. In this case, 2017^4 is a^2 and 2016^4 is b^2. We can set up equations to solve for a and b:
a^2 = 2017^4
a = 2017^2
b^2 = 2016^4
b = 2016^2
Now, the special product a^2 - b^2 factors to (a + b)(a - b), so we can substitute that for the numerator:
<h3>

</h3>
We can notice that both the numerator and denominator contain 2017^2 + 2016^2, so we can divide by
which is just one, and will simplify the fraction to just:
2017^2 - 2016^2
This again is just the special product a^2 - b^2, but in this case a is 2017 and b is 2016. Using this we can factor it:
(2017 + 2016)(2017 - 2016)
And, without using a calculator, this is easy to simplify:
(4033)(1)
4033
Answer:
proof is below
Step-by-step explanation:
Answer:
25^9 + 5^17=
=2^18 + 5^17
=5^17(5+1)
=5^17×6
=5^16×30 is divisible by 30
Answer:
x= -11
Step-by-step explanation:
Answer:
1
2
1
0
*
4
8
Step-by-step explanation:
The answer is in the attachment