480700. The different combinations of students that could go on the trip with a total of 25 student, but only 18 may go, is 480700.
The key to solve this problem is using the combination formula
. This mean the number of ways to choose a sample of r elements from a set of n distinct objects where order does not matter and replacements are not allowed.
The total of students is n and the only that 18 students may go is r:

- 31/6 , -26 square rooted, -5, - 5/6
Answer:
P = 499.2 Watt
Step-by-step explanation:

Answer:
16
Step-by-step explanation:
4(x - 1)2 + 3y
12-4+2+6
8+2+6
10+6
16 i think
Answer:
f(-3) = -12
g(-2) = -19
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Functions
- Function Notation
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
f(x) = 3x - 3
g(x) = 3x³ + 5
f(-3) is <em>x</em> = -3 for function f(x)
g(-2) is <em>x</em> = -2 for function g(x)
<u>Step 2: Evaluate</u>
f(-3)
- Substitute in <em>x</em> [Function f(x)]: f(-3) = 3(-3) - 3
- Multiply: f(-3) = -9 - 3
- Subtract: f(-3) = -12
g(-2)
- Substitute in <em>x</em> [Function g(x)]: g(-2) = 3(-2)³ + 5
- Exponents: g(-2) = 3(-8) + 5
- Multiply: g(-2) = -24 + 5
- Add: g(-2) = -19