1
Simplify n\times \frac{6}{9}n×96 to \frac{2n}{3}32n
\frac{2n}{3}=\frac{3}{12}32n=123
2
Simplify \frac{3}{12}123 to \frac{1}{4}41
\frac{2n}{3}=\frac{1}{4}32n=41
3
Multiply both sides by 33
2n=\frac{1}{4}\times 32n=41×3
4
Simplify \frac{1}{4}\times 341×3 to \frac{3}{4}43
2n=\frac{3}{4}2n=43
5
Divide both sides by 22
n=\frac{\frac{3}{4}}{2}n=243
6
Simplify \frac{\frac{3}{4}}{2}243 to \frac{3}{4\times 2}4×23
n=\frac{3}{4\times 2}n=4×23
7
Simplify 4\times 24×2 to 88
n=\frac{3}{8}n=83
<h3><u>Answer:</u></h3>

<h3><u>Solution</u><u>:</u></h3>
we are given that , a ladder is placed against a side of building , which forms a right angled triangle . We wre given one side of a right angled triangle ( hypotenuse ) as 23 feet and the angle of elevation as 76 ° . We can find the Perpendicular distance from the top of the ladder go to the ground by using the trigonometric identity:

Here,
- hypotenuse = 23 feet
= 76°- Value of Sin
= 0.97 - Perpendicular = ?





ㅤㅤㅤ~<u>H</u><u>e</u><u>n</u><u>c</u><u>e</u><u>,</u><u> </u><u>the </u><u>distance </u><u>from </u><u>the </u><u>top </u><u>of </u><u>the </u><u>ladder </u><u>to </u><u>the </u><u>ground </u><u>is </u><u>2</u><u>2</u><u>.</u><u>3</u><u>2</u><u> </u><u>feet </u><u>!</u>

The answer is d. i hate how you have to have 20 words
Answer:
y=2x-3
Step-by-step explanation: