1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allushta [10]
3 years ago
14

Rename 5400 as hundreds

Mathematics
1 answer:
andrew-mc [135]3 years ago
3 0

The answer to this question 54 because you have to move the decimal point back twice.

You might be interested in
A (x+y)-x (a+b) what is the answer please
ra1l [238]
The answer would be ay-xb
5 0
3 years ago
How do I solve these questions? <br> 5(1+9v)<br> 20b+12<br> -9/4r=-9/2
MatroZZZ [7]
5(1+9v) = 5+ 45v
20b+12= 4(5b+3)
And the last one is r=2
Hope this helps!
7 0
3 years ago
PLEASE HELP FAST!!!!
kakasveta [241]

Answer:

i think c. sorry if its wrong

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
The legs of a right triangle are 12 centimetres and 16 centimeters. What is the length of the hypotenuse?
bonufazy [111]
Hope this helps you.

3 0
3 years ago
Read 2 more answers
how to integrate <img src="https://tex.z-dn.net/?f=e%5E%7B2s%7D%20%2ACos%20%5Cfrac%7Bs%7D%7B4%7D" id="TexFormula1" title="e^{2s}
icang [17]

Answer:

\int\limits {e^{2s} cos\frac{s}{4} ds    =\frac{4 e^{2s} }{65 } ({8 cos (\frac{1}{4} ) s +  sin \frac{1}{4}  s} ))

Step-by-step explanation:

<u><em>Step(i):-</em></u>

Given that  f(s) =  e^{2s} cos\frac{s}{4}

Now integrating

            \int\limits {f(s)} \, ds =  \int\limits {e^{2s} cos\frac{s}{4} ds

By using integration formula

   \int\limits { e^{ax} cos b x dx = \frac{e^{ax} }{a^{2}+b^{2}  } ( a cos b x + b sin b x )

<u><em>Step(ii):-</em></u>

 \int\limits {e^{2s} cos\frac{s}{4} ds    =   \frac{e^{2s} }{(2)^{2}+(\frac{1}{4}) ^{2}  } ( 2 cos (\frac{1}{4} ) s + \frac{1}{4}  sin \frac{1}{4}  s ))  

                    = \frac{e^{2s} }{(4+\frac{1}{16})} ( 2 cos (\frac{1}{4} ) s + \frac{1}{4}  sin \frac{1}{4}  s ))

                   = \frac{e^{2s} }{(\frac{65}{16} } ( \frac{8 cos (\frac{1}{4} ) s +  sin \frac{1}{4}  s}{4}  ))

                 = 16 X\frac{e^{2s} }{65 } ( \frac{8 cos (\frac{1}{4} ) s +  sin \frac{1}{4}  s}{4}  ))

                 =\frac{4 e^{2s} }{65 } ({8 cos (\frac{1}{4} ) s +  sin \frac{1}{4}  s} ))

<u><em>Final answer:-</em></u>

\int\limits {e^{2s} cos\frac{s}{4} ds    =\frac{4 e^{2s} }{65 } ({8 cos (\frac{1}{4} ) s +  sin \frac{1}{4}  s} ))

6 0
3 years ago
Other questions:
  • What's bigger 67% or 2/3
    10·1 answer
  • What is z2+z+4z3+4z2?
    5·2 answers
  • We have two fractions, \dfrac{1}{6} 6 1 ​ start fraction, 1, divided by, 6, end fraction and \dfrac{3}{8} 8 3 ​ start fraction,
    5·1 answer
  • Angela Spangler credit card statement to purchase a new backpack for $28 and bought her sister birthday gift for $45 she made a
    10·1 answer
  • HEY CAN ANYONE PLS ANSWER DIS MATH QUESTION!!!!
    6·1 answer
  • Can someone please help?
    14·1 answer
  • The two shorter sides called legs for the right angle , true or false?
    10·2 answers
  • PLZ HELP ITS DUR RIGHT NOW AND PLZ ANSWER TRUTHFULLY
    14·1 answer
  • I need help with just a and b for question 5
    14·1 answer
  • Employees who have retired from a company are placed in different benefit categories. The bar graph shows the percentages of the
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!