Answer:
Table 2 and 3 represent a proportional relationship because the ratio between two variables are equivalent.
Step-by-step explanation:
If variable y is proportional to variable x, then
![y\propto x](https://tex.z-dn.net/?f=y%5Cpropto%20x)
![y=kx](https://tex.z-dn.net/?f=y%3Dkx)
![\frac{y}{x}=k](https://tex.z-dn.net/?f=%5Cfrac%7By%7D%7Bx%7D%3Dk)
where k is constant of proportionality.
For table 1,
![\dfrac{y_1}{x_1}=\dfrac{5}{1}](https://tex.z-dn.net/?f=%5Cdfrac%7By_1%7D%7Bx_1%7D%3D%5Cdfrac%7B5%7D%7B1%7D)
![\dfrac{y_2}{x_2}=\dfrac{9}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7By_2%7D%7Bx_2%7D%3D%5Cdfrac%7B9%7D%7B2%7D)
![\dfrac{5}{1}\neq \dfrac{9}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B5%7D%7B1%7D%5Cneq%20%5Cdfrac%7B9%7D%7B2%7D)
Therefore, table 1 does not represents a proportional relationship.
Similarly
For table 2,
![\dfrac{\frac{7}{2}}{1}=\dfrac{\frac{21}{2}}{3}=\dfrac{\frac{35}{2}}{5}=\dfrac{\frac{49}{2}}{7}=\dfrac{\frac{63}{2}}{9}=\frac{7}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cfrac%7B7%7D%7B2%7D%7D%7B1%7D%3D%5Cdfrac%7B%5Cfrac%7B21%7D%7B2%7D%7D%7B3%7D%3D%5Cdfrac%7B%5Cfrac%7B35%7D%7B2%7D%7D%7B5%7D%3D%5Cdfrac%7B%5Cfrac%7B49%7D%7B2%7D%7D%7B7%7D%3D%5Cdfrac%7B%5Cfrac%7B63%7D%7B2%7D%7D%7B9%7D%3D%5Cfrac%7B7%7D%7B2%7D)
All ratios are equivalent, therefore Table 2 represents a proportional relationship.
For table 3,
![\dfrac{110}{2}=\dfrac{275}{5}=\dfrac{495}{9}=\dfrac{770}{14}=55](https://tex.z-dn.net/?f=%5Cdfrac%7B110%7D%7B2%7D%3D%5Cdfrac%7B275%7D%7B5%7D%3D%5Cdfrac%7B495%7D%7B9%7D%3D%5Cdfrac%7B770%7D%7B14%7D%3D55)
All ratios are equivalent, therefore Table 3 represents a proportional relationship.
For table 4,
![\dfrac{29.25}{3}=\dfrac{48.75}{5}\neq \dfrac{74}{8}](https://tex.z-dn.net/?f=%5Cdfrac%7B29.25%7D%7B3%7D%3D%5Cdfrac%7B48.75%7D%7B5%7D%5Cneq%20%5Cdfrac%7B74%7D%7B8%7D)
All ratios are not equivalent, therefore Table 4 does not represent a proportional relationship.