1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
2 years ago
9

Help PLEASE!!! Choices: A.) $216 B.) $210 C.) $213 D.) $225

Mathematics
1 answer:
-BARSIC- [3]2 years ago
6 0
The correct answer is B. $210 
You might be interested in
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
2 years ago
2 Richard and Jason each begin filling pools at the same time.
alina1380 [7]

The quantity of the liquid in Richard's tank after 20 minutes will be 120 gallons and in Jason's tank will be 240 gallons.

<h3>What are gallons?</h3>

A gallon is a British unit which is used for the measurement of liquids that is equal to eight pints. In Britain, it is equal to about 4.546 litres. In America, it is equal to about 3.785 litres.

It is given in the question that:-

Richard fills his pool at a rate of 6 gallons per minute.

Jason's pool already contains 200 gallons, and he fills it at a rate of 2 gallons per minute.

After 20 minutes the amount of liquid in the tank will be:-

For Richard = 6 gallons per minute. x  20  minutes= 120 gallons

For Jason= 2 gallons per minute  x  20  =40 gallons

Jason has 200 gallons already in the tank

So it will become = 200+24=240 gallons.

Hence  quantity of the liquid in Richard's tank after 20 minutes will be 120 gallons and in Jason's tank will be 240 gallons.

To know more about Gallons follow

brainly.com/question/16691874

#SPJ1

7 0
2 years ago
Solve the quadratic equation by completing the square. x2 + 6x + 7 = 0
ruslelena [56]
Hello,

x²+2*3x+3²+7-9=0
==>(x+3)²-2=0
==>(x+3-√2)(x+3+√2)=0
==> x=-3+√2 or x=-3-√2
7 0
2 years ago
What is a shorter way to write 10 divided by 5?
Alekssandra [29.7K]

Answer:

see below

Step-by-step explanation:

10/5

(10 over five)

Which is 2

4 0
2 years ago
Read 2 more answers
in my numbers l. the digit in the ones place is double the digit in the tens place. the sum of the digits is 3. my number is?
ANEK [815]

is it 1 + 2=3. are is it 2+1=3. are you a  boy  are  not

6 0
2 years ago
Other questions:
  • In 1998 your house cost $82,400 in 2000 your house was valued $102,650 how much did the home increase
    15·2 answers
  • Solve for t.<br><br>3/4t = 1/4
    12·1 answer
  • A parking garage charges $3 for each of the first three hours. After three hours, the charge is $7 an hour. What is the total co
    9·2 answers
  • 50 POINTS! Show All Work!
    12·2 answers
  • Which set of numbers is ordered from least to greatest?
    5·1 answer
  • Describe how to evaluate and then evaluate<br>the following power: 81 3/2​
    11·1 answer
  • select the graph for the solution of the open sentence click until correct graph appears [×]&gt;1​
    12·1 answer
  • An aquarium has the dimensions of 36 inches wide, 10 inches long and 9 inches high. It was filled with 7 inches of water. How ma
    14·1 answer
  • Help me please !
    8·1 answer
  • I NEED HELP ASAP!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!