Answer:
V=π*(2x^3+35x^2+176x+192)units^3
Step-by-step explanation:
V=πr^2h
r=x+8
h=2x+3
V=π*(x+8)^2*2x+3
=π*(x^2+16x+64)*2x+3
=π*(2x^3+32x^2+128x+3x^2+48x+192)
=π*(2x^3+35x^2+176x+192)
Volume of the cylinder=π*(2x^3+35x^2+176x+192)units^3
Answer:
hope it helps uh..............
-2x+14y=148*3x+5y=256
(-2x+14y)/148=3x+5y=256/148
(-x+y)37/7=3x+5y=64/37
37*7(x+y)/37=(3x+5y)*37=64/37*37
7(x+y)=111x+185y=64
7x-111x=-7y-185y+64
104x=191y+64
x=191y+64/104
Answer:
its b on ege
Step-by-step explanation: