see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>
Answer: 35/3 or 11.6
Step-by-step explanation:
3x-7=28
Add 7 to each side
3x=35
Divide by 3
Let's solve your equation step-by-step.<span><span><span>−w</span>+<span>4<span>(<span>w+3</span>)</span></span></span>=<span>−12</span></span>Step 1: Simplify both sides of the equation.<span><span><span>−w</span>+<span>4<span>(<span>w+3</span>)</span></span></span>=<span>−12</span></span><span>Simplify: (Show steps)</span><span><span><span>3w</span>+12</span>=<span>−12</span></span>Step 2: Subtract 12 from both sides.<span><span><span><span>3w</span>+12</span>−12</span>=<span><span>−12</span>−12</span></span><span><span>3w</span>=<span>−24</span></span>Step 3: Divide both sides by 3.<span><span><span>3w</span>3</span>=<span><span>−24</span>3</span></span><span>w=<span>−8</span></span>Answer:<span>w=<span>−<span>8</span></span></span>
Answer:

Step-by-step explanation:
A quadratic function is a function in which the highest power of the unknown variable is 2.
Formally, a quadratic function is defined as a function of the form:

From the given options, only B and D has the highest power as 2. Therefore, the equations that represent quadratic functions are:

Answer:
11
<em>or</em>
2(5)+2-3
Step-by-step explanation:
if a = 5 and b=2,
you add it into the expression.
2a + b -3 --> 2(5) + 2 - 3
all you have to do is replace the letters with the (given) numbers.
then, solve.
2(5) = 10
2-3= 1
10+1 =11
the answer is 11.
:)