<em>Greetings from Brasil...</em>
According to the statement of the question, we can assemble the following system of equation:
X · Y = - 2 i
X + Y = 7 ii
isolating X from i and replacing in ii:
X · Y = - 2
X = - 2/Y
X + Y = 7
(- 2/Y) + Y = 7 <em>multiplying everything by Y</em>
(- 2Y/Y) + Y·Y = 7·Y
- 2 + Y² = 7X <em> rearranging everything</em>
Y² - 7X - 2 = 0 <em>2nd degree equation</em>
Δ = b² - 4·a·c
Δ = (- 7)² - 4·1·(- 2)
Δ = 49 + 8
Δ = 57
X = (- b ± √Δ)/2a
X' = (- (- 7) ± √57)/2·1
X' = (7 + √57)/2
X' = (7 - √57)/2
So, the numbers are:
<h2>
(7 + √57)/2</h2>
and
<h2>
(7 - √57)/2</h2>
Answer:
D
Step-by-step explanation:
Geometric sequence has to do with a pattern of multiplication, and D has a pattern of times 4 if that makes any sense
In order to have infinitely many solutions with linear equations/functions, the two equations have to be the same;
In accordance, we can say:
(2p + 7q)x = 4x [1]
(p + 8q)y = 5y [2]
2q - p + 1 = 2 [3]
All we have to do is choose two equations and solve them simultaneously (The simplest ones for what I'm doing and hence the ones I'm going to use are [3] and [2]):
Rearrange in terms of p:
p + 8q = 5 [2]
p = 5 - 8q [2]
p + 2 = 2q + 1 [3]
p = 2q - 1 [3]
Now equate rearranged [2] and [3] and solve for q:
5 - 8q = 2q - 1
10q = 6
q = 6/10 = 3/5 = 0.6
Now, substitute q-value into rearranges equations [2] or [3] to get p:
p = 2(3/5) - 1
p = 6/5 - 1
p = 1/5 = 0.2
the answer would be 4.47
because every whole number is made out of 100 small parts.
So that would be like 400-53 which is 447 and then add the decimal point. That would make it 4.47
X^2-14x+49=0
Factor
(x-7)(x-7)
Check
-7-7=-14
-7*-7=49
Use ZPP
x-7=0
x=7
Final answer: x=7