Answer:
The esophagus the stomach the small intestine the large intestine and the rectum
Explanation:
Answer:
Glycogen synthase is phosphorylated at only one site.
Explanation:
Glycogen synthase has multiple sites where phosphorylation can occur. Glycogen synthase may have 9 or more sites where it can be phosphorylated as a result of which it's activity is down regulated. It simply means that the regulation of this enzyme does not occur through binary on/off switching, in fact it's activity is modulated over a wide range in response to various signals.
In contrast to glycogen phosphorylase which gets activated when it is phosphorylated at it's serine residues, glycogen synthase gets inactivated by phosphorylation.
As soon as another enzyme GSK3β phosphorylates glycogen synthase, it gets inactivated as a result of which glycogen synthesis halts in the liver.
Answer:
E-You disagree because the resulting increase in phytoplankton at the surface would inhibit sunlight from penetrating into the water, thus inhibiting photosynthesis in the submerged plants.
Explanation:
Eutrophication is the process wherein nutrients specifically phosphorus and nitrogen are present in excess in a water body such as a lake. The increased concentration of nutrients promoter the growth of cyanobacteria and algae such as phytoplankton.
The increased population of phytoplankton in surface water reduces the oxygen availability and clarity of water for the organisms present in deeper layers. Also, reduced clarity of water limits the amount of solar radiations penetrating the surface water to reach the deeper layers.
Increased nutrient levels of the lake would rather inhibit the growth of submerged plants due to reduced availability of sunlight as caused by presence of phytoplankton in surface water.