1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alik [6]
3 years ago
5

In the past, the average age of employees of a large corporation has been 40 years. Recently, the company has been hiring older

individuals. In order to determine whether there has been an increase in the average age of all the employees, a sample of 64 employees was selected. The average age in the sample was 45 years with a standard deviation of 16 years. Let α = .05
Mathematics
1 answer:
Viktor [21]3 years ago
6 0

Answer:

p_v =P(t_{(63)}>2.5)=0.0075  

If we compare the p value and the significance level given \alpha=0.05 we see that p_v so we can conclude that we have enough evidence to fail reject the null hypothesis, so we can conclude that the mean age is significantly higher than 45 years at 5% of significance.  

Step-by-step explanation:

1) Data given and notation  

\bar X=45 represent the mean height for the sample  

s=16 represent the sample standard deviation for the sample  

n=64 sample size  

\mu_o =40 represent the value that we want to test

\alpha=0.05 represent the significance level for the hypothesis test.  

t would represent the statistic (variable of interest)  

p_v represent the p value for the test (variable of interest)  

State the null and alternative hypotheses.  

We need to conduct a hypothesis in order to check if the mean age is higher than 40 years, the system of hypothesis would be:  

Null hypothesis:\mu \leq 40  

Alternative hypothesis:\mu > 40  

If we analyze the size for the sample is < 30 and we don't know the population deviation so is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:  

t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}  (1)  

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

Calculate the statistic

We can replace in formula (1) the info given like this:  

t=\frac{45-40}{\frac{16}{\sqrt{64}}}=2.5    

P-value

The first step is calculate the degrees of freedom, on this case:  

df=n-1=64-1=63  

Since is a one right tailed test the p value would be:  

p_v =P(t_{(63)}>2.5)=0.0075  

Conclusion  

If we compare the p value and the significance level given \alpha=0.05 we see that p_v so we can conclude that we have enough evidence to fail reject the null hypothesis, so we can conclude that the mean age is significantly higher than 45 years at 5% of significance.  

You might be interested in
HELP ME PLEASEEEEE I WILL GIVE THE BRAINLY THING
Nadya [2.5K]
The answer is C. 71. You add up all the numbers to get 355. and then you divide by the amount of numbers there are. there are 5 numbers so you do 355/5 to get 71.
3 0
3 years ago
All eleven letters in the word GRASSHOPPER are put in a box. What is the probability of drawing a consonant from the box?
Anna007 [38]
R, h, g, s, and p are all constants, so that would be 8/11, or 72% of a chance of getting a consonant. 

I hope this answer helped you! If you have any further questions or concerns, feel free to ask! :)
8 0
3 years ago
What is the value of A
Vlada [557]

Answer:

the answer is -3x² caused when -x divide with 3x it will became -3x²

7 0
3 years ago
15 more than half a number is 9
avanturin [10]
1/2n + 15 = 9 <== ur equation
1/2n = 9 - 15
1/2n = - 6
n = -6 * 2
n = - 12 <== ur solution
4 0
3 years ago
TV studio has brought in 9 boy kittens and 6 girl kittens for a cat food commercial. The director is going to choose 9 of these
Amanda [17]

Answer:

probability = 0.2517

Step-by-step explanation:

given data

boy kittens = 9

girl kittens = 6

choose kittens at random = 9

solution

total kitten are = 9 + 6 = 15

first we get here total no of probability that is

n(s) = 15 C 9

n(s) = \frac{15!}{9!(15-9)!}  

n(s) =5005

and

total way to chose 5 boy kittens is = 9 C 3

n(3) = \frac{9!}{3!(9-3)!}  

n(3) =  84

and

total way to chose 4 girl kittens is = 6 C 4

n(4) = \frac{6!}{4!(6-4)!}  

n(4) = 15

so

total way to chose 5 boy kittens and 4 girl kittens is

total way = 84 ×15  = 1260

so probability that the director chooses 5 boy kittens and 4 girl kittens is

probability = \frac{1260}{5005}  

probability = 0.2517

6 0
3 years ago
Other questions:
  • Please help I really really really need assistance through any means!
    7·2 answers
  • What is 90% written as a decimal rounded to the thousandths place.
    15·2 answers
  • Help me pleaaaasssseeeee..........!!!!!!!!!!!
    6·1 answer
  • Find the first three terms in the expansion , in ascending power of x , of (2+x)^6 and obtain the coefficient of x^2 in the expa
    12·1 answer
  • Pam spelled 68 of 100 words correctly on the pretest how Many words dos the Miss? If she learns 8 of those each day how long wil
    6·1 answer
  • Choose the graph represents the function y-3=3/2(x-4)?
    13·1 answer
  • Which of the following prove that (-3) + 5 = 2? Select all that apply.
    11·1 answer
  • What is the median of the following number: 40, 49, 62, 56, 68, 39, 50, 61, 54, 44
    5·1 answer
  • Grass can grow up to six inches in 7 days depending on the temperature, humidity, and time of year. At this rate, how tall will
    6·2 answers
  • What would be a good first step to graph the solution to the following system?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!