Answer: 10:55
Step-by-step explanation:
Taking statement at face value and the simplest scenario that commencing from 08:00am the buses take a route from depot that returns bus A to depot at 25min intervals while Bus B returns at 35min intervals.
The time the buses will be back at the depot simultaneously will be when:
N(a) * 25mins = N(b) * 35mins
Therefore, when N(b) * 35 is divisible by 25 where N(a) and N(b) are integers.
Multiples of 25 (Bus A) = 25, 50, 75, 100, 125, 150, 175, 200 etc
Multiples of 35 (Bus B) = 35, 70, 105, 140, 175, 210, 245 etc
This shows that after 7 circuits by BUS A and 5 circuits by Bus B, there will be an equal number which is 175 minutes.
So both buses are next at Depot together after 175minutes (2hr 55min) on the clock that is
at 08:00 + 2:55 = 10:55
Right away we know we don't have fractions; the midpoint is the average of the coordinates, so if it and one endpoint are integers so is the other endpoint.
We can do a kind of point arithmetic:
C = (A+B)/2
2C = A+B
B = 2C - A
B = 2(6,1) - (1,3) = (12,2)-(1,3)=(11,-1)
Answer: That's none of the above, but a typo away from the first choice.
I’m not sure sorry also it past due
9514 1404 393
Answer:
nπ -π/6 . . . for any integer n
Step-by-step explanation:
tan(x) +√3 = -2tan(x) . . . . . given
3tan(x) = -√3 . . . . . . . . . . . add 2tan(x)-√3
tan(x) = -√3/3 . . . . . . . . . . divide by 3
x = arctan(-√3/3) = -π/6 . . . . use the inverse tangent function to find x
This is the value in the range (-π/2, π/2). The tangent function repeats with period π, so the set of values of x that will satisfy this equation is ...
x = n·π -π/6 . . . . for any integer n