Answer:
Kimberly is hiking a huge canyon. Every very hour, she hikes down the canyon, and gets -7 feet deeper. How many feet deep is she in 4 hours?
Step-by-step explanation:
I hope this is good.
<h3>Answer:</h3>
±12 (two answers)
<h3>Explanation:</h3>
Suppose one root is <em>a</em>. Then the other root will be -3<em>a</em>. The product of the two roots is the ratio of the constant coefficient to the leading coefficient:
(<em>a</em>)(-3<em>a</em>) = -27/4
<em>a</em>² = -27/(4·(-3)) = 9/4
<em>a</em> = ±√(9/4) = ±3/2
Then the other root is
-3<em>a</em> = -3(±3/2) = ±9/2 . . . . . . the roots will have opposite signs
We know the opposite of the sum of these roots will be the ratio of the linear term coefficient to the leading coefficient: b/4, so ...
-(a + (-3a)) = b/4
2a = b/4
b = 8a = 8·(±3/2)
b = ±12
_____
<em>Check</em>
For b = 12, the equation factors as ...
4x² +12x -27 = (2x -3)(2x +9) = 0
It has roots -9/2 and +3/2, the ratio of which is -3.
For b = -12, the equation factors as ...
4x² -12x -27 = (2x +3)(2x -9) = 0
It has roots 9/2 and -3/2, the ratio of which is -3.
Answer: Connect the two circles together using the compass.
Steps to inscribe an equilateral triangle into a circle:
1. You are given a circle with the center marked.
2. Draw a radius of the circle using your straightedge.
3. Keep your compass open to the width of the radius and place it on the point where the radius and circle intersect.
4. Swing an arc the length of the radius that intersects the circle to the left of the radius originally drawn.
5. Keeping your compass at the same width, place it on the new intersection point you created in the previous step.
6. Continue this process until six points of intersection exist on the circle.
7. Connect together the first, third, and fifth intersection points.
Answer:Answer:

Step-by-step explanation:
Given the sequence -4,-6,-8..., in order to get sigma notation to represent the sum of the first seven terms of the sequence, we need to first calculate the sum of the first seven terms of the sequence as shown;
The sum of an arithmetic series is expressed as ![S_n = \frac{n}{2}[2a+(n-1)d]](https://tex.z-dn.net/?f=S_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D)
n is the number of terms
a is the first term of the sequence
d is the common difference
Given parameters
n = 7, a = -4 and d = -6-(-4) = -8-(-6) = -2
Required
Sum of the first seven terms of the sequence
![S_7 = \frac{7}{2}[2(-4)+(7-1)(-2)]\\\\S_7 = \frac{7}{2}[-8+(6)(-2)]\\\\S_7 = \frac{7}{2}[-8-12]\\\\\\S_7 = \frac{7}{2} * -20\\\\S_7 = -70](https://tex.z-dn.net/?f=S_7%20%3D%20%5Cfrac%7B7%7D%7B2%7D%5B2%28-4%29%2B%287-1%29%28-2%29%5D%5C%5C%5C%5CS_7%20%3D%20%20%5Cfrac%7B7%7D%7B2%7D%5B-8%2B%286%29%28-2%29%5D%5C%5C%5C%5CS_7%20%3D%20%20%5Cfrac%7B7%7D%7B2%7D%5B-8-12%5D%5C%5C%5C%5C%5C%5CS_7%20%3D%20%5Cfrac%7B7%7D%7B2%7D%20%2A%20-20%5C%5C%5C%5CS_7%20%3D%20-70)
The sum of the nth term of the sequence will be;
![S_n = \frac{n}{2}[2(-4)+(n-1)(-2)]\\\\S_n = \frac{n}{2}[-8+(-2n+2)]\\\\S_n = \frac{n}{2}[-6-2n]\\\\S_n = \frac{-6n}{2} - \frac{2n^2}{2}\\S_n = -3n-n^2\\\\S_n = -n(3+n)](https://tex.z-dn.net/?f=S_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B2%28-4%29%2B%28n-1%29%28-2%29%5D%5C%5C%5C%5CS_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B-8%2B%28-2n%2B2%29%5D%5C%5C%5C%5CS_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B-6-2n%5D%5C%5C%5C%5CS_n%20%3D%20%20%5Cfrac%7B-6n%7D%7B2%7D%20-%20%20%5Cfrac%7B2n%5E2%7D%7B2%7D%5C%5CS_n%20%3D%20-3n-n%5E2%5C%5C%5C%5CS_n%20%3D%20-n%283%2Bn%29)
The sigma notation will be expressed as
. <em>The limit ranges from 1 to 7 since we are to find the sum of the first seven terms of the series.</em>
Answer:
bro these college story problems getting deep
Step-by-step explanation: