The coefficient matrix is build with its rows representing each equation, and its columns representing each variable.
So, you may write the matrix as
![\left[\begin{array}{cc}\text{x-coefficient, 1st equation}&\text{y-coefficient, 1st equation}\\\text{x-coefficient, 2nd equation}&\text{y-coefficient, 2nd equation} \end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Ctext%7Bx-coefficient%2C%201st%20equation%7D%26%5Ctext%7By-coefficient%2C%201st%20equation%7D%5C%5C%5Ctext%7Bx-coefficient%2C%202nd%20equation%7D%26%5Ctext%7By-coefficient%2C%202nd%20equation%7D%20%5Cend%7Barray%7D%5Cright%5D%20%20)
which means
![\left[\begin{array}{cc}4&-3\\8&-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%26-3%5C%5C8%26-3%5Cend%7Barray%7D%5Cright%5D%20%20)
The determinant is computed subtracting diagonals:
![\left | \left[ \begin{array}{cc}a&b\\c&d\end{array}\right]\right | = ad-bc](https://tex.z-dn.net/?f=%20%5Cleft%20%7C%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%5Cright%20%7C%20%3D%20ad-bc%20)
So, we have
![\left | \left[\begin{array}{cc}4&-3\\8&-3\end{array}\right] \right | = 4(-3) - 8(-3) = -4(-3) = 12](https://tex.z-dn.net/?f=%20%5Cleft%20%7C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%26-3%5C%5C8%26-3%5Cend%7Barray%7D%5Cright%5D%20%5Cright%20%7C%20%3D%204%28-3%29%20-%208%28-3%29%20%3D%20-4%28-3%29%20%3D%2012%20%20)
Answer:
a. 
b. 
Step-by-step explanation:
The initial value problem is given as:

Applying laplace transformation on the expression 
to get ![L[{y+y'} ]= L[{7 + \delta (t-3)}]](https://tex.z-dn.net/?f=L%5B%7By%2By%27%7D%20%5D%3D%20L%5B%7B7%20%2B%20%5Cdelta%20%28t-3%29%7D%5D)

Taking inverse of Laplace transformation
![y(t) = 7 L^{-1} [ \dfrac{1}{(s+1)}] + L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{(s+1)-s}{s(s+1)}] +L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{1}{s}-\dfrac{1}{s+1}] + L^{-1}[\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]](https://tex.z-dn.net/?f=y%28t%29%20%3D%207%20L%5E%7B-1%7D%20%5B%20%5Cdfrac%7B1%7D%7B%28s%2B1%29%7D%5D%20%2B%20L%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%5C%5C%20%5C%5C%20y%28t%29%20%3D%207L%5E%7B-1%7D%20%5B%5Cdfrac%7B%28s%2B1%29-s%7D%7Bs%28s%2B1%29%7D%5D%20%2BL%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%5C%5C%20%5C%5C%20y%28t%29%20%3D%207L%5E%7B-1%7D%20%5B%5Cdfrac%7B1%7D%7Bs%7D-%5Cdfrac%7B1%7D%7Bs%2B1%7D%5D%20%2B%20L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%5C%5C%20%5C%5C%20y%28t%29%20%3D%207%20%5B1-e%5E%7B-t%7D%20%5D%20%2B%20L%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D)
![L^{-1}[\dfrac{e^{-3s}}{s+1}]](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D)
![L^{-1}[\dfrac{1}{s+1}] = e^{-t} = f(t) \ then \ by \ second \ shifting \ theorem;](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7B1%7D%7Bs%2B1%7D%5D%20%3D%20e%5E%7B-t%7D%20%20%3D%20f%28t%29%20%5C%20then%20%5C%20by%20%5C%20second%20%5C%20shifting%20%5C%20theorem%3B)
![L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{f(t-3) \ \ \ t>3} \atop {0 \ \ \ \ \ \ \ \ \ t](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%3D%20%5Cleft%20%5C%7B%20%7B%7Bf%28t-3%29%20%5C%20%5C%20%5C%20t%3E3%7D%20%5Catop%20%7B0%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20t%20%3C3%7D%7D%20%5C%20%5C%20%5C%20%20%5Cright.)
![L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{e^{(-t-3)} \ \ \ t>3} \atop {0 \ \ \ \ \ \ \ \ \ t](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%3D%20%5Cleft%20%5C%7B%20%7B%7Be%5E%7B%28-t-3%29%7D%20%5C%20%5C%20%5C%20t%3E3%7D%20%5Catop%20%7B0%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20t%20%3C3%7D%7D%20%5C%20%5C%20%5C%20%20%5Cright.)

= 
Recall that:
![y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]](https://tex.z-dn.net/?f=y%28t%29%20%3D%207%20%5B1-e%5E%7B-t%7D%20%5D%20%2B%20L%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D)
Then



That is for Geometry. So Pythagorean Theorem: a2 + b2 = c2. The Pythagorean Theorem is a formula that gives a relationship between the sides of a right triangle The Pythagorean Theorem only applies to RIGHT triangles. A RIGHT triangle is a triangle with a 90 degree angle.
Answer:
m∠Z1 = 93°
Step-by-step explanation:
Vertical Angles are the angles opposite each other when two lines cross.
They are congruent (the same as each other).
Therefore, m∠Z1 = m∠Z2, so if m∠Z2 = 93° then m∠Z1 = 93°
Answer:
its 44
Step-by-step explanation:
180=46+90+x
180=136+x
44=x