Hello!
log₃(x) + log₃(x - 6) = log₃(7) <=>
<=> log₃(x * (x - 6)) = log₃(7) <=>
<=> log₃(x² - 6x) = log₃(7) <=>
<=> x² - 6x = 7 <=>
<=> x² - 6x - 7 = 0 <=>
<=> x² + x - 7x - 7 = 0 <=>
<=> x * (x + 1) - 7 * (x + 1) = 0 <=>
<=> (x + 1) * (x - 7) = 0 <=>
<=> x + 1 = 0 and x - 7 = 0 <=>
<=> x = -1 and x = 7, x ∈ { 6; +∞ } <=>
<=> x = 7
Good luck! :)
Answer:
6 and 9
Step-by-step explanation:
set up an equation and solve for x
(x+3) * x = 54
easiest way to to try some numbers.
if you know your multiplication tables...
what two number multiplied together are 54
be sure the numbers you are thinking of meet the rules
is one 3 more than the other
do they multiply together to get 54
Answer: C
Step-by-step explanation: You want to find the square root of each number given. The square root of 400 is 20, and the square root of 100 is 10
Given that ∠B ≅ ∠C.
to prove that the sides AB = AC
This can be done by the method of contradiction.
If possible let AB
=AC
Then either AB>AC or AB<AC
Case i: If AB>AC, then by triangle axiom, Angle C > angle B.
But since angle C = angle B, we get AB cannot be greater than AC
Case ii: If AB<AC, then by triangle axiom, Angle C < angle B.
But since angle C = angle B, we get AB cannot be less than AC
Conclusion:
Since AB cannot be greater than AC nor less than AC, we have only one possibility. that is AB =AC
Hence if angle B = angle C it follows that
AB = AC, and AB ≅ AC.