3/4's obviously because the percentage is bigger.
The parabola crosses the x axis at -6 and 2
so there is two solutions x = -6 and 2
the answer is B
Answer:
b. 80
Step-by-step explanation:
Answer:
![\frac{x^{2} }{4312 } + \frac{y^{2} }{8281 }](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B4312%20%7D%20%2B%20%5Cfrac%7By%5E%7B2%7D%20%7D%7B8281%20%7D)
Step-by-step explanation:
Since the foci are at(0,±c) = (0,±63) and vertices (0,±a) = (0,±91), the major axis is the y- axis. So, we have the equation in the form (with center at the origin)
.
We find the co-vertices b from b = ±√(a² - c²) where a = 91 and c = 63
b = ±√(a² - c²)
= ±√(91² - 63²)
= ±√(8281 - 3969)
= ±√4312
= ±14√22
So the equation is
![\frac{x^{2} }{(14\sqrt{22}) ^{2} } + \frac{y^{2} }{91^{2} } = \frac{x^{2} }{4312 } + \frac{y^{2} }{8281 }](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B%2814%5Csqrt%7B22%7D%29%20%5E%7B2%7D%20%7D%20%2B%20%5Cfrac%7By%5E%7B2%7D%20%7D%7B91%5E%7B2%7D%20%7D%20%3D%20%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B4312%20%7D%20%2B%20%5Cfrac%7By%5E%7B2%7D%20%7D%7B8281%20%7D)