<em>u={1,2,3,4,5},A={2,4} and Beta {2,5,5}</em>
<em>now</em><em>,</em><em> </em><em>(AUB)</em><em>=</em><em>{</em><em>1</em><em>,</em><em>3</em><em>,</em><em>3</em><em>,</em><em>4</em><em>,</em><em>5</em><em>}</em>
<em>[</em><em>AUB</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>set</em><em> </em><em>of</em><em> </em><em>all</em><em> </em><em>elements</em><em> </em><em>of</em><em> </em><em>set</em><em> </em><em>A</em><em> </em><em>and</em><em> </em><em>set</em><em> </em><em>B</em><em> </em><em>without </em><em>any</em><em> </em><em>repetition </em><em>]</em>
<em>n</em><em>(</em><em>AUB</em><em>)</em><em>=</em><em>5</em>
<em>n</em><em>(</em><em>AUB</em><em>)</em><em>is</em><em> </em><em>the</em><em> </em><em>total</em><em> </em><em>no</em><em> </em><em>of</em><em> </em><em>elements</em><em> </em><em>in</em><em> </em><em>set</em><em> </em><em>(</em><em>AUB</em><em>)</em>
<span>The geometric term described as an infinite set of
points that has length but not width is called a line. It has a negligible with
and depth. In geometry, a line located in the plane is defined as the set of
points whose coordinates satisfy a given linear equation. </span>
Then the lest multiple of 6 and 8 are 5 and 7 duh
2/cos x
........................
Answer:
(x + 6, y + 0), 180° rotation, reflection over the x‐axis
Step-by-step explanation:
The answer can be found out simply , a trapezoid has its horizontal sides usually parallel meanwhile the vertical sides are not parallel.
The horizontal parallel sides are on the x-axis.
Reflection over y- axis would leave the trapezoid in a vertical position such that the trapezoid ABCD won't be carried on the transformed trapezoid as shown in figure.
So option 1 and 2 are removed.
Now, a 90 degree rotation would leave the trapezoid in a vertical position again so its not suitable again.
In,The final option (x + 6, y + 0), 180° rotation, reflection over the x‐axis, x+6 would allow the parallel sides to increase in value hence the trapezoid would increase in size,
180 degree rotation would leave the trapezoid in an opposite position and reflection over x-axis would bring it below the Original trapezoid. Hence, transformed trapezoid A`B`C`D` would carry original trapezoid ABCD onto itself