the commutative property was used
Hmm if I'm not mistaken, is just an "ordinary" annuity, thus
![\bf \qquad \qquad \textit{Future Value of an ordinary annuity} \\\\ A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right] \\\\\\](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7BFuture%20Value%20of%20an%20ordinary%20annuity%7D%0A%5C%5C%5C%5C%0AA%3Dpymnt%5Cleft%5B%20%5Ccfrac%7B%5Cleft%28%201%2B%5Cfrac%7Br%7D%7Bn%7D%20%5Cright%29%5E%7Bnt%7D-1%7D%7B%5Cfrac%7Br%7D%7Bn%7D%7D%20%5Cright%5D%0A%5C%5C%5C%5C%5C%5C)
The slope m of a line
through points

and

is given by :<span>

Thus, the slope of the line passing through points </span><span>(−1, 7) and (2, 10) is
</span>

<span>
The equation of a line with slope m passing through a point P(a, b) is given by
(y-b)=m(x-a).
We can consider any of the points (-1, 7), or (2, 10). Let's choose (2, 10):
y-10=1(x-2)
y-10=x-2
y-x=-2+10
y-x=8
Answer: </span><span>C. −x+y=8</span>
Answer:
The numbers needed to fill each box are in the image attached
Step-by-step explanation:
The probability of the coin landing on heads is 2/7, so the probability of it landing on tails is 1 - 2/7 = 5/7
The probability of landing heads 2 times is:
P = (2/7) * (2/7) = 4/49
The probability of landing heads and then tails is:
P = (2/7) * (5/7) = 10/49
The probability of landing tails and then heads is:
P = (5/7) * (2/7) = 10/49
The probability of landing tails 2 times is:
P = (5/7) * (5/7) = 25/49
The numbers needed to fill each box are in the image attached.
Answer:
100/9
Step-by-step explanation:
(7*5*2/7*3)² * (5^0/2^-3)³ * 2^-9
Solution:
We know that any number with power 0 = 1
(7*5*2/7*3)² * (1/2^-3)³ * 2^-9
Now cancel out 2 by 2
= (7*5*2/7*3)² * (1/1^-3)³ * 1^-9
=(70/21)² * (1)³/(1^-3)³ * 1^-9
=(10/3)^2 * 1/1^-1 * 1/1^9
=100/9 *1 *1
=100/9....