1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kaheart [24]
3 years ago
11

Whats an expression for the volume?

Mathematics
2 answers:
aalyn [17]3 years ago
4 0

poooooop i thinkkkklkk kdkkd                                                                    

vivado [14]3 years ago
3 0

Answer:

V=L*W*H

Step-by-step explanation:yeet

You might be interested in
What is the approximate solution of this system of equations?
Effectus [21]
Hmm, I'd say it's the first option.
3 0
4 years ago
20 POINTS AND BRAINLIEST
emmainna [20.7K]
To solve this equation we must first plug in 5 for x.

\frac{1}{3}<span> (5 - 4x)
               </span>↓ 
\frac{1}{3} (5 - 4 · 5)

The next step would be to multiply 4 by 5 to get rid of the parenthesis within our main parenthesis.

\frac{1}{3} (5 - 4 · 5)

\frac{1}{3} (5 - 20)

The next step would be to subtract both of the numbers within the parenthesis.

\frac{1}{3} (-15)

Now we must multiply.

- \frac{1}{3} · 15 =  - \frac{1×15}{3}

- \frac{15}{3}

Now we simplify our answer to get our final answer.

-5
8 0
3 years ago
Geometry help! Please prove the following is a square with full explanation, I'm really lost.
Hoochie [10]

We have to show that this is a square, meaning all the sides are perpendicular and the same distance.  

A(3,4), B(2,-2), C(-4,-1), D(-3,5)

For each side we calculate the squared distance and the slope.  We don't have to bother to take the square root.  We'll subtract the points first because that difference, called the direction vector, goes into both the calculation of the slope and of the distance.

AB=B-A=(2 - 3, -2 - 4) = (-1, -6).   slope=-6/-1=6  AB²=(-1)²+(-6)²=37

BC=C-B=(-6, 1).  slope=1/-6=-1/6.   BC²=(-6)²+1²

CD=D-C=(1, 6).   slope=6/1=6    CD²=1²+6²=37

DA=A-D=(6,-1)   slope=-1/6     DA²=37

We see the negative reciprocal slopes, alternating between 6 and -1/6, indicating perpendicular sides.  We see they all have squared distance 37.  Equal perpendicular sides proves its a square.

If we do these problems enough we learn:  There's no point taking the square root.  In fact, there's really no point computing the slopes and the squared distances; we can see it's a square from the pattern of the direction vectors of the sides:  (-1, -6) (-6, 1) (1, 6) (6,-1)

5 0
4 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
3/4 x 3 2/5 - 5/5(find the value of each of the following) ​
Triss [41]

The value of the given expression is \frac{-13}{20}.

Solution:

Given expression is \frac{3}{4} \times3\frac{2}{5}-\frac{5}{5}.

Let us first convert mixed fraction into improper fraction.

3\frac{2}{5}=\frac{(3\times5)+2}{5}=\frac{17}{5}

Substitute this in the given expression.

\frac{3}{4} \times3\frac{2}{5}-\frac{5}{5}=\frac{3}{4} \times\frac{7}{15}-\frac{5}{5}

                  =\frac{21}{60}-\frac{5}{5}

To simplify the above expression, 21 and 60 are cancelled by 3.

                 =\frac{7}{20}-\frac{1}{1}

Do cross multiplication to make the denominator same.

                 =\frac{7}{20}-\frac{20}{20}

                 =\frac{7-20}{20}

                 =\frac{-13}{20}

The value of the given expression is \frac{-13}{20}.

7 0
3 years ago
Other questions:
  • Carl is boarding a plane. He has 2 checked bags of equal weight and a backpack that weighs 4 kg.The total weight of Carls baggag
    6·1 answer
  • Bill has enough money to buy no more than 1/2 pounds of cheese. How much cheese can he buy?
    7·2 answers
  • you travel 50 miles in 4 hours what is your average speed of travel over the 4 hours in miles per hour
    10·1 answer
  • A man bought a computer for $ 14 500. He sold it for $9000. Work out the percentage loss. *
    12·1 answer
  • Which is an example of the associative property?
    7·2 answers
  • WORTH LOT OF POINTS DONT PLAGERIZE NO FAKE ANSWERS WILLL REPORT::::: Mindy understands how to tell if ordered pairs are function
    12·1 answer
  • The first term of a sequence is 13 you take away 5 find out the 4th term
    12·1 answer
  • I need you guy’s help answer thanks so much
    5·1 answer
  • Solve for x. <br> 8x - 2 = 3x + 5x
    12·1 answer
  • Consider the following regression equation: y = 30 8x. if sse = 960 and ss total = 1,600., then the correlation coefficient is _
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!