1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
3 years ago
10

The curve

Mathematics
1 answer:
kherson [118]3 years ago
4 0

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Relationship in Figures
lubasha [3.4K]

Answer:

B. 1,1,2,3,5,8,13,21

Step-by-step explanation:

I calculated it logically

8 0
3 years ago
Write a single transformation that maps ABC onto A' B' C'
blsea [12.9K]

9514 1404 393

Answer:

  Either of ...

  • (x, y) ⇒ (-x, -y)
  • Rotation 180° about the origin

Step-by-step explanation:

There are at least two ways to express the transformation that maps each coordinate to its opposite.

  1. reflection across the origin: (x, y) ⇒ (-x,-y)

  2. rotation 180° (either direction) about the origin.

Take your pick.

4 0
3 years ago
1) During skating practice, Sasha landed 7 out of 12 jumps. What is the experimental
balandron [24]

Answer:

14 maybe

Step-by-step explanation:

5 0
3 years ago
3n - n + 7 = 25<br><br>Help plz
WARRIOR [948]
The answer is N=6 but first you have to simplify the problem try that '

8 0
3 years ago
There is a closed carton of eggs in Mai's refrigerator. The carton contains e eggs and it can hold 12 eggs. What does the inequa
den301095 [7]

Answer:

That the number of eggs (e) in the carton is less than 12

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • What is the value of x in the equation 3x-1/9=18 when y equals 27
    9·1 answer
  • 15% of what number is 24? A. 36 B. 150 C. 160 D. 180
    15·2 answers
  • What is 56/100 in its simplest form
    12·1 answer
  • A bag has 2 blue marbles 3 red marbles and 5 white marbles. Which event has a probability greater than 1/5 select three options
    15·1 answer
  • Polly spent 77/100 of a dollar to buy some mints how can you express 77/100 as a money amount
    11·2 answers
  • The ratio of roosters to chickens is 2 to 8. If there are 5 roosters, how many chickens are there? Complete the ratio table to s
    15·1 answer
  • You spent $10.50 at the fair. If it costs $4.50 for admission and you rode
    12·2 answers
  • Jack buys a pool with 400 gallons, and it take 8 hours to fill. How many gallons were poured per hour?
    11·2 answers
  • If you need to construct a dog run for your dog and the total perimeter needs to be 40 feet, and you only have enough room to ma
    12·1 answer
  • Please help ASAP
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!