1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
2 years ago
10

The curve

Mathematics
1 answer:
kherson [118]2 years ago
4 0

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
What is the lcm of 4 and 5
timama [110]

Answer:

20

Step-by-step explanation:

4 * 1 = 4        5 * 1 = 5

4 * 2 = 8        5 * 2 = 10

4* 3 = 12        5 * 3 = 15

4 * 4 = 16       5 * 4 = 20

4 * 5 = 20


they both go into 20 equally. there is no number lower than 20 that they both go into

8 0
2 years ago
What is 89 divide into 4356
ValentinkaMS [17]
Divide 89 by 4356
\frac{89}{4356} = 0.02 is the answer
6 0
2 years ago
Read 2 more answers
Whoaa buddy ole pal dont answer this it isnt a question
shutvik [7]

Answer: fgm

Step-by-step explanation:

6 0
3 years ago
Marcus had a debt of $120 on his credit card. He made a payment to the account, leaving $47 of debt remaining. What integer best
Lostsunrise [7]

Answer:

73

Step-by-step explanation:

120-47=73 simple math

5 0
3 years ago
Find the image of A(-2,4) under a translation (x,y)-&gt;(x-2,y-3)​
vichka [17]

Answer:

Point A would be at the coordinates, (-4, 1). Hope this helps!

4 0
2 years ago
Other questions:
  • Is this equation 4( − 11) = 15 − 4a one solution a no solution or more that one solution
    11·1 answer
  • Can someone please find x?
    10·2 answers
  • BRAINLIESTTTT!!!! ASAP
    6·1 answer
  • After sailing 12 mi, a sailor changed direction and increased the boat's speed by 4 mph. an additional 18 mi was sailed at the i
    6·1 answer
  • Based on the data set shown, which of the following is a true statement? -1, -1, 0, 1, 1, 1, 1, 2, 2, 2, 3
    5·1 answer
  • Solve -4x+y=8 and 2x=-y-10
    6·1 answer
  • I do not understand numbers 3 and 4
    14·1 answer
  • What 2 integers is the square root of 70 between?
    9·2 answers
  • Which of the following equations represents an exponential relationship?
    5·1 answer
  • Find the area of a circle with a diameter of 8m in terms of pi
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!