1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
2 years ago
10

The curve

Mathematics
1 answer:
kherson [118]2 years ago
4 0

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Enter the value of a and b that complete the sum: 3/x + 5/x^2 = ax+b/x^2
Aleksandr [31]

Answer:

a=\frac{3}{x^{2} }

b=5

Step-by-step explanation:

we are given

\frac{3}{x} }+\frac{5}{x^{2} }=ax+\frac{b}{x^{2} }

we will compare both sides of equaion

 \frac{b}{x^{2} }=\frac{5}{x^{2} }

comparing both sides we get

b=5

and

\frac{3}{x} }=ax

a=\frac{3}{x^{2} }

hence

a=\frac{3}{x^{2} }

and   b=5

4 0
3 years ago
Find the sum of the first 25 terms in this geometric series:<br> 8 + 6 + 4.5...
Ksivusya [100]

Step-by-step explanation:

Given the geometric sequence

8 + 6 + 4.5...

A geometric sequence has a constant ratio and is defined by

a_n=a_1\cdot r^{n-1}

\mathrm{Compute\:the\:ratios\:of\:all\:the\:adjacent\:terms}:\quad \:r=\frac{a_{n+1}}{a_n}

\frac{6}{8}=\frac{3}{4},\:\quad \frac{4.5}{6}=\frac{3}{4}

\mathrm{The\:ratio\:of\:all\:the\:adjacent\:terms\:is\:the\:same\:and\:equal\:to}

r=\frac{3}{4}

\mathrm{The\:first\:element\:of\:the\:sequence\:is}

a_1=8

\mathrm{Therefore,\:the\:}n\mathrm{th\:term\:is\:computed\:by}\:

a_n=8\left(\frac{3}{4}\right)^{n-1}

\mathrm{Geometric\:sequence\:sum\:formula:}

a_1\frac{1-r^n}{1-r}

\mathrm{Plug\:in\:the\:values:}

n=25,\:\spacea_1=8,\:\spacer=\frac{3}{4}

=8\cdot \frac{1-\left(\frac{3}{4}\right)^{25}}{1-\frac{3}{4}}

\mathrm{Multiply\:fractions}:\quad \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c}

=\frac{\left(1-\left(\frac{3}{4}\right)^{25}\right)\cdot \:8}{1-\frac{3}{4}}

=\frac{8\left(-\left(\frac{3}{4}\right)^{25}+1\right)}{\frac{1}{4}}

\mathrm{Apply\:exponent\:rule}:\quad \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c}

=\frac{8\left(-\frac{3^{25}}{4^{25}}+1\right)}{\frac{1}{4}}

\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{a}{\frac{b}{c}}=\frac{a\cdot \:c}{b}

=\frac{\left(1-\frac{3^{25}}{4^{25}}\right)\cdot \:8\cdot \:4}{1}

\mathrm{Multiply\:the\:numbers:}\:8\cdot \:4=32

=\frac{32\left(-\frac{3^{25}}{4^{25}}+1\right)}{1}

=\frac{32\cdot \frac{4^{25}-3^{25}}{4^{25}}}{1}               ∵ \mathrm{Join}\:1-\frac{3^{25}}{4^{25}}:\quad \frac{4^{25}-3^{25}}{4^{25}}

=32\cdot \frac{4^{25}-3^{25}}{4^{25}}

=\frac{\left(4^{25}-3^{25}\right)\cdot \:32}{4^{25}}

=\frac{2^5\left(4^{25}-3^{25}\right)}{2^{50}}        ∵ \mathrm{Factor}\:32:\ 2^5,  \mathrm{Factor}\:4^{25}:\ 2^{50}

so

=\frac{4^{25}-3^{25}}{2^{45}}        ∵ \mathrm{Cancel\:}\frac{\left(4^{25}-3^{25}\right)\cdot \:2^5}{2^{50}}:\quad \frac{4^{25}-3^{25}}{2^{45}}

\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{a\pm \:b}{c}=\frac{a}{c}\pm \frac{b}{c}

=\frac{4^{25}}{2^{45}}-\frac{3^{25}}{2^{45}}      

=32-\frac{3^{25}}{2^{45}}            ∵  \frac{4^{25}}{2^{45}}=32

=32-0.024        ∵  \frac{3^{25}}{2^{45}}=0.024

=31.98            

Therefore, the sum of the first 25 terms in this geometric series: 31.98

3 0
3 years ago
Two spherical balloons are filled with water. The first balloon has a radius of 3 cm, and the second has a radius of 6 cm.
lana [24]
<span>Sphere Volume   = </span><span>  4/3 • <span>π <span>• r³<span>

Small Balloon = </span></span></span></span><span>4/3 • 3.14<span> <span>• 3^3

</span></span></span><span>Small Balloon = 37.68 cc

Large Balloon =  </span><span>4/3 • 3.14<span> • 6^3</span></span>

Large Balloon =  <span> <span> <span> 904.32  </span> </span> </span> cc

<span> <span> <span> <span> Difference = (904.32 -</span></span></span>37.68) = </span> <span> <span> <span> 866.64 </span> </span> </span> cc

The larger balloon has <span> <span> <span> 866.64 </span> </span> </span> cc more water than the small balloon.


4 0
3 years ago
Giving away the last of my points :( <br> please answer these two questions
o-na [289]

Answer:

i think it a and c

Step-by-step explanation:

if i'm wrong sorry bout that i was just trynna help.since ur giving away ur last points u can go to my account and anwer my questions u dont have to give me the right  answer or anything i promise i wont report u just do that and you can get mote points :)

8 0
2 years ago
Read 2 more answers
Por favor contesten en a y b​
erik [133]

Answer:

what...............

4 0
3 years ago
Other questions:
  • Maria and Nadia drive from Philadelphia to Toronto to visit their friend. They take two days for the trip, stopping along the wa
    12·1 answer
  • Inverse of 6(x+2)^2 -6
    9·1 answer
  • Daniela bought 132 unicorn toys from the store. She then bought 231 minion toys. About how many toys does she have altogether? (
    15·2 answers
  • HELP PLZZZZZZZZZZZZZ Which does NOT represent the sample space of choosing one marble from the bag shown? IT WONT LET ME POST A
    7·1 answer
  • Jamal treated his family to a fancy brunch. Their brunch cost $250, and the local sales tax
    6·1 answer
  • james determined that these two expressions were equivalent expressions using the values of x=4 and x=6 which statements are tru
    13·1 answer
  • Assume that a procedure yields a binomial distribution with a trial repeated n times. Use
    13·1 answer
  • Can someone plz help me with this one problem plz I’m being timed!!!
    9·2 answers
  • A. Examine the zeros of the graph, and write a function that models this situation.
    5·1 answer
  • Find the sum of 6x^2+10x-16x 2 +10x−1 and -5x^2-2x+1−5x^2 −2x+1.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!