1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
3 years ago
10

The curve

Mathematics
1 answer:
kherson [118]3 years ago
4 0

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Bob is a travel agent. He receives 7% commission when he books a cruise for a customer. How much commission will he receive for
Kamila [148]

Answer:

$273

Step-by-step explanation:

$3900= 100%

$39 = 1%

39(1%)*7= $273 (7%)

5 0
3 years ago
How would I find k , L , and M. Giving Brainly
SSSSS [86.1K]
Angle L is equal to angle N, so angle L is equal to 119. Angle k and angle L is equal to 61.
8 0
3 years ago
What would be the equation for #23???
Rufina [12.5K]
Hi there!

Let r be the number of matches that Rebecca's team won.

We know that Katheryn's team won 9 more matches than Rebecca's team, and we know that Katheryn's team won 52 matches.

Using this given information, we can create the following equation.

r+9=52

If you wish to solve this, we can subtract both sides by 9 to get the following value for r.

r=43

Have an awesome day! :)

~collinjun0827, Junior Moderator
8 0
3 years ago
Read 2 more answers
1. Find the phase shift of the function y = 5cos(2x + pi/2).
kolezko [41]

Answer:

see explanation

Step-by-step explanation:

1

The cosine function in standard form is

y = acos(bx + c)

where a is the amplitude, period = \frac{2\pi }{b} and

phase shift = - \frac{c}{b}

here b = 2 and c = \frac{\pi }{2}, thus

phase shift = - \frac{\frac{\pi }{2} }{2} = - \frac{\pi }{4}

2

the amplitude = | a |

which has a maximum of a and a minimum of - a

y = 4cosx ← has a maximum value of 4

5 0
3 years ago
PLEASE HELP
kolbaska11 [484]

Answer:

  • a) P(x) = 32000*1.04^x
  • b) $37435
  • c) During year 7

Step-by-step explanation:

<u>Given</u>

  • Initial pay = $32000
  • Increase rate = 4%

a. <u>Formula</u>

  • P(x) = 32000*1.04^x

b. Year 5 is after 4 years, so we are looking for the value of P(4)

  • P(4) = $32000*1.04^4 = $37435

c. <u>P(x) = 40000, x = ?</u>

  • 40000 = 32000*1.04^x
  • 1.04^x = 40000/32000
  • 1.04^x = 1.25
  • log 1.04^x = log 1.25
  • x = log 1.25 / log 1.04
  • x = 5.69, this is 6 years after

The required number of the years is 6 + 1 = 7

3 0
3 years ago
Other questions:
  • How can you 83 x 57 estimate
    15·2 answers
  • 4x = 20
    8·2 answers
  • All points of the step function f(x) are graphed.
    15·2 answers
  • I have to right a statistic question would this be one Out of 60 7th graders 45 or 75% of them prefer to play sports after schoo
    7·1 answer
  • Compare the numbers below using , or = -2+-4_-3+-9
    9·1 answer
  • Timo was curious if quadrilaterals LMNR and PQNO were similar, so he tried to map one figure onto
    10·2 answers
  • It asks to simplify the expression​
    14·1 answer
  • Sophia is paid $12 per hour to babysit. Which equation represents how much money Sophia earns, d, when she babysits for h hours?
    5·1 answer
  • 3. Given M(-2, 1) is the midpoint on AB and point A has coordinates (-8, -3), find:
    5·1 answer
  • Find (y) 2x+0,4y= 9 x=2,3
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!