1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
2 years ago
10

The curve

Mathematics
1 answer:
kherson [118]2 years ago
4 0

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
I need help ASAP please
suter [353]

Answer:

sorry dude I don't know so sorry

8 0
3 years ago
Read 2 more answers
What is the remainder when 1,095 is divided by 7?<br> A) 3 <br> B) 4 <br> C) 5 <br> D) 6
Rina8888 [55]
The answer is a or 3

5 0
3 years ago
Read 2 more answers
Which equation best represents the relationship between x and y.
Assoli18 [71]

Answer:

b

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
Use simultaneous equations to solve the following. Three kilograms of jam and two kilograms of butter cost $29 and six kilograms
artcher [175]

Answer:

The cost of 1kg jam is $7 and the cost of 1kg butter is $4

Step-by-step explanation:

Let jam = x

butter = y

3x + 2y = 29 -----(1)

6x + 3y = 54 -----(2)

(1)×2 ->

6x + 4y = 58 -----(3)

(3)-(2) ->

y = 4

suby=4into(2)

6x + 3(4) = 54

6x = 42

x = 7

(Correct me if i am wrong)

6 0
3 years ago
What is the ratio value shown by this double number line?
OlgaM077 [116]
The answer is 21/6




Explanation: the next number in the pattern would be 21 since this is linear
5 0
3 years ago
Other questions:
  • Can someone answer this?
    13·1 answer
  • What is 5/7 in the simplest form
    10·1 answer
  • Andrea paid $60.75 for 9 sandwiches. Each sandwich costs the same amount. Use the drop down menus to write an equation for the p
    6·1 answer
  • A cone has a slant length of 10 and a diameter of 8. Height is unknown.
    9·1 answer
  • 5.
    11·1 answer
  • Cant do word problems. ​
    10·1 answer
  • Using known properties, determine if the statements are true or not. Select True or False for each statement. If one pair of con
    5·1 answer
  • Li deposited $17,500 into a bank account that earned simple interest each year. After 2 years, he had earned $2975 in interest.
    9·1 answer
  • 4x + 8y= -8 <br> X= -2y + 1
    11·1 answer
  • What is the perimeter of this composite figure?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!