Answer:
Radius of convergence of power series is
Step-by-step explanation:
Given that:
n!! = 1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n n is odd
n!! = 2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n n is even
(-1)!! = 0!! = 1
We have to find the radius of convergence of power series:
Power series centered at x = a is:
Applying the ratio test:
Applying n → ∞
The numerator as well denominator of are polynomials of fifth degree with leading coefficients:
(f+g)(x) = f(x) + g(x)
(f+g)(x) = [ f(x) ] + [ g(x) ]
(f+g)(x) = [ 3x-2 ] + [ 2x+1 ]
(f+g)(x) = (3x+2x) + (-2+1)
(f+g)(x) = 5x - 1
Answer is choice B
Answer:
A. Y=2x+3
Step-by-step explanation:
because im right
Answer:
6
Step-by-step explanation:
If p equals 15 then plug 15 in for p and take 15-9=6. pretty sure that's what they are looking for there.
Answer:
...
Step-by-step explanation:
slope= -4/3
y-intercept= -4
y=mx+b
y= -4/3x-4