1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gekata [30.6K]
4 years ago
12

Please help, trig is a real problem for me ​

Mathematics
1 answer:
Andreyy894 years ago
4 0

Answer:

2. cotФ = -\frac{4}{3}

3. sec²Ф - tan²Ф = 1

4. \frac{sin^{2}\alpha+cos^{2}\alpha}{tan^{2}\alpha+1} = cos²∝

5. The value of sin x is \frac{1}{2}

6. cos 15° =  \frac{\sqrt{6}+\sqrt{2}}{4}

7. tan(α + β) = -\frac{63}{16}

8. sin(π - Ф) = sin Ф

9. cos 2Ф = -\frac{1}{2}

10. sin 2Ф = 0.96

Step-by-step explanation:

2.

∵ cos Ф = -\frac{4}{5}

∵ 90° < Ф < 180°

- That means Ф lies on the 2nd quadrant

∴ sin Ф is a positive value

∵ sin²Ф + cos²Ф = 1

∴ sin²Ф + ( -\frac{4}{5} )² = 1

∴ sin²Ф +  \frac{16}{25} = 1

- Subtract from both sides  \frac{16}{25}

∴ sin²Ф =  \frac{9}{25}

- Take √ for both sides

∴ sinФ = \frac{3}{5}

∵ cotФ = cosФ ÷ sinФ

∴ cotФ = -\frac{4}{5} ÷  \frac{3}{5}

∴ cotФ = -\frac{4}{3}

3.

The expression is sec²Ф - tan²Ф

∵ tan²Ф = sec²Ф - 1

- Substitute tan²Ф by the right hand side in the expression

∴ sec²Ф - tan²Ф = sec²Ф - (sec²Ф - 1)

∴ sec²Ф - tan²Ф = sec²Ф - sec²Ф + 1

- Simplify the right hand side

∴ sec²Ф - tan²Ф = 1

4.

The expression is  \frac{sin^{2}\alpha+cos^{2}\alpha}{tan^{2}\alpha+1}

∵ The numerator is sin²∝ + cos²∝

∵ sin²∝ + cos²∝ = 1

∴ The numerator = 1

∵ The denominator is tan²∝ + 1

∵ tan²∝ = \frac{sin^{2}\alpha}{cos^{2}\alpha}

∴ tan²∝ + 1 =  \frac{sin^{2}\alpha}{cos^{2}\alpha} + 1

- Change 1 to  fraction \frac{cos^{2}\alpha}{cos^{2}\alpha}

∴ tan²∝ + 1 =  \frac{sin^{2}\alpha}{cos^{2}\alpha} +  \frac{cos^{2}\alpha}{cos^{2}\alpha}

- Add the two fractions  

∴ tan²∝ + 1 =  \frac{sin^{2}\alpha+cos^{2}\alpha }{cos^{2}\alpha}

∵ sin²∝ + cos²∝ = 1

∴ tan²∝ + 1 = \frac{1}{cos^{2}\alpha}

∴ The denominator =  \frac{1}{cos^{2}\alpha}

∴  \frac{sin^{2}\alpha+cos^{2}\alpha}{tan^{2}\alpha+1} = \frac{1}{\frac{1}{cos^{2}\alpha}}

- Remember denominator the denominator will be a numerator

∴ \frac{sin^{2}\alpha+cos^{2}\alpha}{tan^{2}\alpha+1} = cos²∝

5.

∵ tan x cos x = \frac{1}{2}

∵ tan x = \frac{sin(x)}{cos(x)}

∴ \frac{sin(x)}{cos(x)} × cos x = \frac{1}{2}

- Simplify it by canceling cos x up with cos x down

∴ sin x = \frac{1}{2}

∴ The value of sin x is \frac{1}{2}

6.

∵ cos(Ф - ∝) = cosФ cos∝ + sinФ sin∝

∵ 45 - 30 = 15

∴ cos 15° = cos(45 - 30)°

- Use the rule above to find the exact value

∵ cos(45 - 30)° = cos 45° cos 30° + sin 45° sin 30°

∵ cos 45° = \frac{\sqrt{2}}{2} and sin 45° =

∵ cos 30° = \frac{\sqrt{3}}{2} and sin 30° = \frac{1}{2}

∴ cos(45 - 30)° =  \frac{\sqrt{2}}{2} ×  \frac{\sqrt{3}}{2} +  

∴ cos(45 - 30)° =  \frac{\sqrt{6}}{4} +  \frac{\sqrt{2}}{4}  = \frac{\sqrt{6}+\sqrt{2}}{4}

∴ cos 15° =  \frac{\sqrt{6}+\sqrt{2}}{4}

7.

∵ tan(α + β) = \frac{tan\alpha+tan\beta}{1-tan\alpha.tan\beta}

∵ cos α = \frac{5}{13} and 0° < α < 90°

- That means α is in the 1st quadrant, then all trigonometry

    ratios are positive

∵ sin²α + cos²α = 1

∴ sin²α + ( \frac{5}{13} )² = 1

∴ sin²α + \frac{25}{169}  = 1

- Subtract  \frac{25}{169}  from both sides

∴ sin²α =  \frac{144}{169}

- Take √ for both sides

∴ sin α =  \frac{12}{13}

∵ tan α = sin α ÷ cos α

∴ tan α = \frac{12}{13} ÷ \frac{5}{13}

∴ tan α = \frac{12}{5}  

∵ sin β = \frac{3}{5} and 0° < β < 90°

∵ sin²β + cos²β = 1

∴ ( \frac{3}{5} )² + cos²β = 1

∴ \frac{9}{25} + cos²β = 1

- Subtract  \frac{9}{25}  from both sides

∴ cos²β =  \frac{16}{25}

- Take √ for both sides

∴ cos β =  \frac{4}{5}

∵ tan β = sin β ÷ cos β

∴ tan β = \frac{3}{5} ÷ \frac{4}{5}

∴ tan β = \frac{3}{4}  

- Substitute the values of tan α and tan β in the tan (α + β)

∵ tan(α + β) = \frac{tan\alpha+tan\beta}{1-tan\alpha.tan\beta}

∴ tan(α + β) = \frac{\frac{12}{5}+\frac{3}{4}}{1-(\frac{12}{5})(\frac{3}{4})}

∴ tan(α + β) = -\frac{63}{16}

8.

∵ sin(α - β) = sin α cos β - cos α sin β

∴ sin(π - Ф) = sin π cos Ф - cos π sin Ф

∵ sin π = 0 and cos π = -1

∴ sin(π - Ф) = (0) × cos Ф - (-1) × sin Ф

∴ sin(π - Ф) = 0 + sin Ф

∴ sin(π - Ф) = sin Ф

9.

∵ cos 2Ф = 2 cos²Ф - 1

∵ cos Ф = \frac{1}{2}

∴ cos 2Ф = 2 ( \frac{1}{2} )² - 1

∴ cos 2Ф = 2 × \frac{1}{4} - 1

∴ cos 2Ф = \frac{1}{2} - 1

∴ cos 2Ф = -\frac{1}{2}

10.

∵ sin 2Ф = 2 sinФ cosФ

∵ cosФ = 0.6 and 0° < Ф < 90°

- That means Ф is in the 1st quadrant and all its trigonometry

   ratios are positive

∵ sin²Ф + cos²Ф = 1

∴ sin²Ф + (0.6)² = 1

∴ sin²Ф + 0.36 = 1

- Subtract 0.36 from both sides

∴ sin²Ф = 0.64

- Take √ for both sides

∴ sinФ = 0.8

- Substitute the values of sinФ and cosФ in the rule above

∴ sin 2Ф = 2(0.8)(0.6)

∴ sin 2Ф = 0.96

You might be interested in
Consider the following equation, bh+hr=25 when solving for h
olga2289 [7]
1.) Distribute out the h: h(b+r)=25
2.) Divide out b+r: h=25/(b+r)

The answer is 25/(b+r)
7 0
4 years ago
Read 2 more answers
Question: A book contains 10 photograph , some in color and some in black-and-white. Each
padilas [110]

Answer:

B

Step-by-step explanation:

8 0
4 years ago
2a + 6 = 6<br> 2a =<br> Subtract 6 from both sides<br> Divide both sides by 2
Alla [95]

Answer:

0

Step-by-step explanation:

2a+6=6

-6=-6

2a=0

2 2

a=0

8 0
3 years ago
For the function f(x) = -2x?, if the domain is {-3, 0, 3}, find the range.<br> =-
Nutka1998 [239]

Answer:

here the Range ={6,0,-6}

4 0
3 years ago
On a map to cities are about 50 mm apart if the scale is 1 cm equals 15.5 miles how far apart are the two cities
Mademuasel [1]

Given:

On a map to cities are about 50 mm apart.

Scale is 1 cm equals 15.5 miles.

To find:

The distance between two cities.

Step-by-step explanation:

We have,

1 cm = 15.5 miles

It means

10 mm = 15.5 miles             [1 cm = 10 mm]

Now,

10 mm on a map = 15.5 miles

1 mm on a map = \dfrac{15.5}{10} miles

                          = 1.55 miles

50 mm on a map = 50 × 1.55 miles

                            = 77.5

Therefore, the two cities are 77.5 miles apart.

4 0
3 years ago
Other questions:
  • Brittany borrowed 3 movies from the library. Each movie is almost 2 hours long. About how many hours of movies does Brittany hav
    10·1 answer
  • Each side of the first figure is one unit copy and complete the table then find the function rule for the relationship between t
    8·1 answer
  • A soccer ball is kicked from the ground at an upwards velocity of 90 feet per second. The equation h(t)=-16t^(2)+90t gives the h
    5·1 answer
  • The domain of a function is given by {-4,2,8}. If the function is defined by y= x +1 /3 ,then which of the following values is a
    5·1 answer
  • What is the function g(x) created from f(x) = x2 by moving the graph left 2 units, adding vertical compression by a factor of 1/
    7·1 answer
  • Cos of 16/34<br> Sin 32/40<br> Tan 32/24
    15·1 answer
  • Kasim has 7 square platters of equal size. Each side of each platter is 0.4 meters long. Kasim places all the platters in a row
    11·1 answer
  • Y = 3x +1; domain = {-1, 0, 1}<br> HELP PLEASE
    9·2 answers
  • 3. Find the length of the missing side using the Pythagorean Theorem. Round to the nearest tenth if necessary.
    8·1 answer
  • Find an equation of the line parallel to 8x − 3y = 1 and containing the point (−2, 0)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!