Answer:
Every time a new piece of equipment is added to the system, if ifs not properly optimized within the scope of the entire system, you'll end up with wasted energy and operational inefficiencies
We have a line y = 1/3x -6
We want a line that is perpendicular to this line
Perpendicular lines have slopes that multiply to -1
1/3 * m = -1
3 * 1/3 *m = -1 * 3
m = -3
The slope of the perpendicular line is -3
y = mx+b where m is the slope and b is the y intercept
y = -3x+b
We have a point on the line ( 7 ,-23)
Substitute this point into the equation
-23 = -3(7)+b
-23 = -21+b
Add 21 to each side
-23+21 = -21+21+b
-2 = b
y = -3x-2
In slope intercept form, the line perpendicular passing through (7,-23) is
y = -3x-2
35/12. When you multiply the operation this is the answer you get.