You have the correct answer. It is choice A. Nice work.
I prefer using full circles because sometimes the arcs could be too small in measure to not go where you want them to. If you're worried about things getting too cluttered (a legitimate concern), then I recommend drawing everything in pencil and only doing the circles as faint lines you can erase later. Once the construction is complete, you would go over the stuff you want to keep with a darker pencil, pen or marker. You can also use the circle as a way to trace over an arc if needed.
Choice B is false as a full circle can be constructed with a compass. Simply rotate the compass a full 360 degrees. Any arc is a fractional portion of a circle.
Choice C is false for similar reasoning as choice B, and what I mentioned in the paragraph above.
Choice D contradicts choice A, so we can rule it out. Arcs are easier to draw since it takes less time/energy to rotate only a portion of 360 degrees. Also, as mentioned earlier, having many full circles tend to clutter things up.
Answer:
30 % off
Step-by-step explanation:
12 dollars off of 40
40 (x) = 12
x = 12/40 = .3 or 30 %
Answer:
f(x) = - 8
Explanation:
The given function is
f(x) =2x^2 -4x -6
The first step is to find the derivative of the function. Recall, if
y = ax^b
y' = abx^(b - 1)
Thus,
f'(x) = 4x - 4
We would equate f'(x) to zero and solve for x. We have
4x - 4 = 0
4x = 4
x = 4/4
x = 1
We would substitute x = 1 into the original function and solve for f(x) or y. It becomes
f(1) =2(1)^2 -4(1) - 6 = 2 - 4 - 6
f(1) = - 8
Thus, the minimum value is f(x) = - 8
The answer is C. Just divide all of the fractions and use the decimals to see which is bigger/smaller.