Im confused. Its not equal to any of the choices
Unless C is the cube root of 32^5.
[t3] \sqrt[n]{x} [32^5]
Complete question is attached.
Answer:
B) 8
Step-by-step explanation:
In this question, KLMN ~ PQRS. This means they are similar shapes.
From the image, we could denote that:
KL ~ PQ
LM ~ QR
Given that:
KL = 12
PQ = 30
QR = 20
LM = x
To find x, let's use tge expression:
Cross multiplying, we have:
12 * 20 = 30x
240 = 30x
To find x, let's divide both sides by 30.
8 = x
x = 8
The correct option is option B.
The distance between two points on the plane is given by the formula below
![\begin{gathered} A=(x_1,y_1),B=(x_2,y_2) \\ \Rightarrow d(A,B)=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20A%3D%28x_1%2Cy_1%29%2CB%3D%28x_2%2Cy_2%29%20%5C%5C%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B%28x_1-x_2%29%5E2%2B%28y_1-y_2%29%5E2%7D%20%5Cend%7Bgathered%7D)
Therefore, in our case,

Thus,
![\begin{gathered} \Rightarrow d(A,B)=\sqrt[]{(-1-5)^2+(-3-2)^2}=\sqrt[]{6^2+5^2}=\sqrt[]{36+25}=\sqrt[]{61} \\ \Rightarrow d(A,B)=\sqrt[]{61} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B%28-1-5%29%5E2%2B%28-3-2%29%5E2%7D%3D%5Csqrt%5B%5D%7B6%5E2%2B5%5E2%7D%3D%5Csqrt%5B%5D%7B36%2B25%7D%3D%5Csqrt%5B%5D%7B61%7D%20%5C%5C%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B61%7D%20%5Cend%7Bgathered%7D)
Therefore, the answer is sqrt(61)
In general,

Remember that

Therefore,
Proportional relationships<span>: A </span>relationship<span> between two equal ratios. Proportions are the comparison of two equal ratios. Therefore, </span>proportionalrelationships<span> are </span>relationships<span> between two equal ratios. For example, oranges are sold in a bag of 5 for $2. The ratio of oranges to their cost is 5:2 or.</span><span>In mathematics, two variables are proportional if a change in one is always accompanied by a change in the other, and if the changes are always related by use of a constant multiplier. The constant is called the coefficient of proportionality or proportionality constant.</span>