1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
qaws [65]
4 years ago
9

Which do you chose i need help!!

Mathematics
1 answer:
Alecsey [184]4 years ago
5 0
Not sure what the question is here but if I had to choose it would be the the red thing because that computer looks like it would lag like hell plus it probably has some old lady games on it
You might be interested in
Simplify 2 to the fifth power over 3 squared all raised to the fourth power. 2 to the twentieth power over 3 to the eighth power
Murrr4er [49]

2 to the fifth power over 3 squared all raised to the fourth power

\left(\dfrac{2^5}{3^2}\right)^4=\dfrac{(2^5)^4}{(3^2)^4}=\dfrac{2^{5\cdot4}}{3^{2\cdot4}}=\dfrac{2^{20}}{3^8}

Answer: 2 to the twentieth power over 3 to the eighth power

Used:

\left(\dfrac{a}{b}\right)^n=\dfrac{a^n}{b^n}\\\\(a^n)^m=a^{n\cdot m}

7 0
3 years ago
This is on the constant of proportionality from a table...
ZanzabumX [31]

The correct answer is 8.3 repeated.

25 divided by 3 is 8.3 repeated and so is the rest so it is obvious to say that 8.3 repeated is the correct answer.

3 0
3 years ago
The shown bellow question answer
Flura [38]

▪▪▪▪▪▪▪▪▪▪▪▪▪  {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪

Are of the given figure is ~

\boxed{ 50.28 \:  \: cm {}^{2} }

\large \boxed{ \mathfrak{Step\:\: By\:\:Step\:\:Explanation}}

The area of the compound shape is equal to ~

Area of rectangle + Area of semi - circle

let's find the Area of rectangle ~

  • length \times width

  • 11 \times 4

  • 44 \:  \:   {cm}^{2}

now, let's find the Area of Semicircle ~

  • \dfrac{ \pi{r}^{2} }{2}

  • \dfrac{3.14 \times 2 \times 2}{2}

  • 6.28 \:  \: c {m}^{2}

So, Area of the given figure is equal to ~

  • 44 + 6.28

  • 50.28 \:  \: cm {}^{2}

8 0
3 years ago
tim and alex collected aluminum cans for recycling. Tim collected a total of 942 cans. Alex collected 327 cans. How many fewer c
lukranit [14]
942-327= 615

Alex collected 615 cans less than Tim.
5 0
3 years ago
Read 2 more answers
Guided Practice
emmasim [6.3K]

Answer:

B.

y=2 · 3xy equals 2 times 3 superscript x baseline

Step-by-step explanation:

The bacteria culture starts with 500 bacteria and doubles size every half hour.= 2 hours

32,000

Thus, after three hours, the population of bacteria is 32,000.= 3 hours

A bacteria culture starts with 500 bacteria and doubles in size every half hour.1

(a) How many bacteria are there after 3 hours?

We are told “. . . doubles in size every half hour.” Let’s make a table of the time and population:

t 0 0.5 1.0 1.5 2.0 2.5 3.0

bacteria 500 1000 2000 4000 8000 16000 32000

Thus, after three hours, the population of bacteria is 32,000.

(b) How many bacteria are there after t hours?

In t hours, there are 2t doubling periods. (For example, after 4 hours, the population has doubled 8

times.) The initial value is 500, so the population P at time t is given by

P(t) = 500 · 2

2t

This is an acceptable response, but in calculus and all advanced mathematics and science, we will

almost always want to use the natural exponential base, e. Let’s redo the problem using the natural

exponential growth function

P(t) = P0e

rt

We are given that the initial population is 500 bacteria. So P0 = 500 and we have

P(t) = 500ert

We know that after 1 hour, there are 2000 bacteria. (We could’ve used any other pair from our table

that we wish.) Substituting into our function, we get

P(t) = 500ert

2000 = 500er·1

2000 = 500er

1

500

· 2000 =

1

500

· 500er

4 = er

and now we use the natural logarithm to solve for r

ln (4) = ln (er

)

ln (4) = r · ln (e)

ln (4) = r

1.3863 ≈ r

Thus the function P(t) = 500e1.3863t gives the number of bacteria after t hours.

(c) How many bacteria are there after 40 minutes?

The input t to our function is given in hours, so we must convert 40 minutes into hours. So (40 min)

1 hr

60 min

=

2

3

hr.

P(t) = 500e1.3863t

P

2

3

= 500e1.3863·(2/3)

P

2

3

≈ 1259.9258

Thus, after 40 minutes (2/3 of an hour), there are about 1260 bacteria.

(d) Graph the population function and estimate the time for the population to reach 100,000.

50000

100000

1 2 3 4 5

b

(3.8219, 100,000)

t

P

Using the calc:intersect on the TI-84, we get the point (3.8219, 100000), thus the population will

reach 100,000 in about 3.82 yrs

6 0
3 years ago
Other questions:
  • How do you solve this. Plz help
    11·1 answer
  • What is the equation of a line through point (-4,5) that is perpendicular to the line with equation y=-6x+4?
    9·1 answer
  • Find an equation of the sphere with center (4, −12, 8) and radius 10.
    11·1 answer
  • Please help me. I will give Brainliest! Please no guessing
    13·1 answer
  • Use the geometric mean (altitude) theorem. What is the value of m?
    8·2 answers
  • EASY QUESTION<br> What is the greatest common factor of 18, 36, and 90?
    7·2 answers
  • Solve for x in this circle.
    7·1 answer
  • Write the recurring decimal 0.5 as a fraction in its simplest form.​
    11·2 answers
  • Apoint of sale transaction occurs when an ATM withdrawal is made.
    13·1 answer
  • Someone please help will mark as brainliest
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!