Answer:
Please check the explanation.
Step-by-step explanation:
Part a)
Given that the two parallel lines are crossed by a transversal line.
Given that
m∠2 = 2x + 54 and m∠6 = 6x - 11
Angle ∠2 and ∠6 are corresponding angles.
Corresponding angles are congruent.
Thus,
m∠2 = m∠6
2x + 54 = 6x - 11
flipe the equation
6x - 11 = 2x + 54
subtract 2x from both sides
6x - 2x - 11 = 2x - 2x + 54
4x - 11 = 54
adding 11 to both sides
4x - 11 + 11 = 54 + 11
4x = 65
dvide both sides by 4
4x/4 = 65/4
x = 16.2500 (round to 4 decimal places)
Part b)
We have already determined
x = 16.2500
Given
m∠2 = 2x + 54
substitute x = 16.2500 in the euation
= 2(16.2500) + 54
= 86.5°
As angle ∠2 and angle ∠1 lie on a straight line. Hence, the sum of their angles must be 180°.
i.e.
m∠1 + m∠2 = 180°
substituting m∠2 = 86.5° in the equation
m∠1 + 86.5° = 180°
subtracting 86.5° from both sides
m∠1 + 86.5° - 86.5° = 180° - 86.5°
m∠1 = 93.5°
Therefore, the measure of angle m∠1 is:
Answer:
-39 + 20x
Step-by-step explanation:
4 + 7 x 3 - 24 x 2 + 20x - 16
4 + 21 - 48 + 20x - 16
-39+20x
<h2>
Answer: x = -6</h2>
<h3>
Step-by-step explanation:</h3>
To solve for x, we have to find a way to make x the subject of the equation (get x on one side and everything else on the other side)
<h3>
</h3>
since -4 = (2/3)x [mutiply both sides by 3]
⇒ -4 × 3 = 2x [divide both sides by 2]
⇒ (-12/2) = x [simplify by dividing -12 by 2]
∴ x = -6
The answer is neither 108 or 900, but it is
V = 1357.17To solve, use the formula for the volume of a cone:

fill r with 6 and h with 36

When you solve that, you get 1357.17
<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>√</em><em>3</em><em>1</em><em>4</em><em> </em><em>units</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>