Answer:
a) 
a1 = log(1) = 0 (2⁰ = 1)
a2 = log(2) = 1 (2¹ = 2)
a3 = log(3) = ln(3)/ln(2) = 1.098/0.693 = 1.5849
a4 = log(4) = 2 (2² = 4)
a5 = log(5) = ln(5)/ln(2) = 1.610/0.693 = 2.322
a6 = log(6) = log(3*2) = log(3)+log(2) = 1.5849+1 = 2.5849 (here I use the property log(a*b) = log(a)+log(b)
a7 = log(7) = ln(7)/ln(2) = 1.9459/0.6932 = 2.807 
a8 = log(8) = 3 (2³ = 8)
a9 = log(9) = log(3²) = 2*log(3) = 2*1.5849 = 3.1699 (I use the property log(a^k) = k*log(a) ) 
a10 = log(10) = log(2*5) = log(2)+log(5) = 1+ 2.322= 3.322
b) I can take the results of log n we previously computed above to calculate 2^log(n), however the idea of this exercise is to learn about the definition of log_2: 
log(x) is the number L such that 2^L = x. Therefore 2^log(n) = n if we take the log in base 2. This means that
a1 = 1
a2 = 2
a3 = 3
a4 = 4
a5 = 5
a6 = 6
a7 = 7
a8 = 8
a9 = 9 
a10 = 10
I hope this works for you!!
 
        
             
        
        
        
I wish I knew but same profile pic pog
        
                    
             
        
        
        
Answer:
B. 3x + y = 4
Step-by-step explanation:
y = -3x + 4
Check:
3x + y = 4
<u>-3x        -3x</u>
y = -3x + 4
 
        
                    
             
        
        
        
<u> Equation:</u>
x(x      -     5)     +     3(x     +     5)
<u>Steps:</u> 
x(x      -     5)     +     3(x     +     5)
<u>Expand:</u>
x(x     -     5 ):           x^2      -    5x
x^2    -    5x     +   3(x      +     5)
<u>Expand:</u>
3(x     +    5):        3x   +    15
x^2     -     5x     +     3x       +     15
<u>Add Similar Elements:   </u>  
-5x      +    3x    
=         -2x
Answer        x^2    -     2x      +    15    Doesn't Factor
Hope that helps!!!                                  : )