Answer:
v = 1.28 m/s
Explanation:
Given that,
Maximum compression of the spring, 
Spring constant, k = 800 N/m
Mass of the block, m = 0.2 kg
To find,
The velocity of the block when it first reaches a height of 0.1 m above the ground on the ramp.
Solution,
When the block is bounced back up the ramp, the total energy of the system remains conserved. Let v is the velocity of the block such that,
Initial energy = Final energy

Substituting all the values in above equation,

v = 1.28 m/s
Therefore the velocity of block when it first reaches a height of 0.1 m above the ground on the ramp is 1.28 m/s.
I do not recall the answer to this question
Answer:
The mass of the earth, 
Explanation:
It is given that,
Time taken by the moon to orbit the earth, 
Distance between moon and the earth,
We need to find the mass of the Earth using Kepler's third law of motion as :




So, the mass of the earth is
. Hence, this is the required solution.
The answer is 18000 kgm/s
Momentum is mass times velocity so just do 750•24.