Electric Current:
Electric current is the flow of charge through a given circuit per unit time. Electric current is one of the components needed to calculate the electric power that a device needs to operate and do work. Electric current is measured in amperes (A), which is equal to:
1A = 1 C/ s
Recall that the coulomb (C) is the unit for charge while the second (s) is the unit for time
Given: I = 3.5
A is the current
Δt =30 s is the time interval
A =ΔQ/ΔT
Net charge = 100C
Electricity is produced when an electric current runs through a circuit.
How does electric current work?
A current of electricity is a steady flow of electrons. When electrons move from one place to another, round a circuit, they carry electrical energy from place to place like marching ants carrying leaves. Instead of carrying leaves, electrons carry a tiny amount of electric charge.
Learn more about Electric current :
brainly.com/question/27003377
#SPJ4
Answer:
Mass of the vehicle and small bug.
Explanation:
- By Newton's third law, force on bug and vehicle will be same when they collide with each other irrespective of their masses.
- But according to Newton's second law, force is mass times acceleration. Since the force on each mass is same, the smaller mass will accelerate more and the heavier mass will accelerate less for the same force.
- Therefore the acceleration of bug will be very greater than vehicle as the mass of the bug is very small as compared to vehicle.
Learn more about Newton's law.
brainly.com/question/974124
#SPJ10
Answer:
Forces can be divided into primarily into two types of forces:
Explanation:
Answer:
-963.93 m/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration


The acceleration of Superman would be -963.93 m/s² from Lois' perspective
In that case, heat energy flows from the warmer object to the cooler one.
As heat flows from one to the other, the temperature of the warmer object
falls, and the temperature of the cooler object rises. When the temperatures
are equal, the flow of heat energy from one to the other stops.